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1 Random Variable Generation

Inverse Transform Method

Definition 1.1. Let F be a CDF with support S. We define the generalized inverse of F as F − : [0, 1]→ S with
F −(u) = inf {x ∈ S : F (x) ⩾ u}.

Note 1.1. According to the definition of the generalized inverse F − and the fact that the CDF F is an increasing
function, we infer that F (x) ⩾ u⇔ F −(u) ⩽ x.

Theorem 1.1. Let U ∼ Unif(0, 1). Then, the random variable X = F −(U) has CDF F .

Proof. We know that FU (u) = P(U ⩽ u) = u for u ∈ [0, 1]. For x ∈ S, we calculate that:

FX(x) = P(X ⩽ x) = P
[
F −(U) ⩽ x

]
= P [F (x) ⩾ U ] = FU (F (x)) = F (x).

Absolutely Continuous Random Variable Genetation

Note 1.2. If the CDF F is absolutely continuous, then F − ≡ F −1.

Example 1.1. We want to generate a random sample X1, . . . , Xn ∼ Unif[a, b]. For x ∈ [a, b], we calculate that:

F (x) = x− a

b− a
, F −1(u) = (b− a)u + a.
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n = 10000

a = -1

b = 4

U = runif(n)

X = (b - a) * U + a

hist(X, "FD", freq = FALSE, main = NA, xlab = NA)

curve(dunif(x, a, b), add = TRUE, col = "red", lwd = 2)
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Example 1.2. We want to generate a random sample X1, . . . , Xn ∼ Exp(λ). For x > 0, we calculate that:

F (x) = 1− e−λx, F −1(u) = − 1
λ

log(1− u).

n = 10000

lambda = 2

U = runif(n)

X = -log(1 - U)/lambda

hist(X, "FD", freq = FALSE, main = NA, xlab = NA)

curve(dexp(x, lambda), add = TRUE, col = "red", lwd = 2)
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Lemma 1.1. If U ∼ Unif[0, 1], then V = 1− U ∼ Unif[0, 1].

Proof. For v ∈ [0, 1], we calculate that:

FV (v) = P(V ⩽ v) = P(1− U ⩽ v) = P(U ⩾ 1− v) = 1− P(U ⩽ 1− v) = 1− (1− v) = v = FU (v).

n = 10000

lambda = 2

U = runif(n)

X = -log(U)/lambda

hist(X, "FD", freq = FALSE, main = NA, xlab = NA)

curve(dexp(x, lambda), add = TRUE, col = "red", lwd = 2)
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Lemma 1.2. If X ∼ Exp(λ) and µ > 0, then the random variables Y = (X | X > µ) and W = X + µ are
identically distributed.

Proof. First, we know that P(X > µ) = 1− FX(µ) = e−λµ. For x > µ, we calculate that:

FY (x) = P (X ⩽ x | X > µ) = P (X ⩽ x, X > µ)
P(X > µ) = FX(x)− FX(µ)

FX(µ) = e−λµ − e−λx

e−λµ
= 1− e−λ(x−µ),

FW (x) = P (W ⩽ x) = P (X + µ ⩽ x) = FX(x− µ) = 1− e−λ(x−µ).

Note 1.3. The previous lemma is a consequence of the memoryless property of the exponential distribution.

Example 1.3. Let X ∼ Exp(λ) and µ > 0. We want to generate a random sample X1, X2, . . . , Xn from the
conditional distribution of X given that X > µ.

n = 10000

lambda = 2

mu = 1

U = runif(n)

X = mu - log(U)/lambda
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hist(X, "FD", freq = FALSE, main = NA, xlab = NA)

curve(dexp(x - mu, lambda), add = TRUE, col = "red", lwd = 2)
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Example 1.4. We want to generate a random sample X1, . . . , Xn ∼ Gamma(k, λ) for k ∈ N. Consider independent
random variables Y1, . . . , Yk ∼ Exp(λ). Then, we know that Y1 + · · ·+ Yk ∼ Gamma(k, λ).

n = 10000

k = 2

lambda = 2

U = matrix(runif(n * k), n)

Y = -log(U)/lambda

X = rowSums(Y)

hist(X, "FD", freq = FALSE, main = NA, xlab = NA)

curve(dgamma(x, k, lambda), add = TRUE, col = "red", lwd = 2)

D
en

si
ty

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

Example 1.5. For x ∈ R, we want to generate a random sample X1, X2, . . . , Xn with the following PDF:

f(x) = λ

2 e−λ|x−µ|.
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For x ⩽ µ, we calculate that:

F (x) = P(X ⩽ x) =
∫ x

−∞
f(y)dy =

∫ x

−∞

λ

2 e−λ(µ−y)dy = 1
2e−λ(µ−x).

For x > µ, we calculate that:

F (x) = P(X ⩽ µ) + P(µ < X ⩽ x) = F (µ) +
∫ x

µ

λ

2 e−λ(y−µ)dy = 1
2 −

1
2e−λ(x−µ) + 1

2 = 1− 1
2e−λ(x−µ).

For u ∈ [0, F (µ)] = [0, 0.5], we calculate that:

F (x) = u⇔ x = µ + 1
λ

log(2u).

For u ∈ (F (µ), 1] = (0.5, 1], we calculate that:

F (x) = u⇔ x = µ− 1
λ

log [2(1− u)] .

Therefore, we infer that:

F −1(u) =

 µ + 1
λ log(2u), 0 ⩽ u ⩽ 0.5

µ− 1
λ log [2(1− u)] , 0.5 < u ⩽ 1

.

n = 10000

lambda = 2

mu = 1

U = runif(n)

X = ifelse(U <= 0.5, mu + log(2 * U)/lambda, mu - log(2 * (1 - U))/lambda)

hist(X, "FD", freq = FALSE, main = NA, xlab = NA)

curve(dexp(abs(x - mu), lambda)/2, add = TRUE, col = "red", lwd = 2)
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Example 1.6. We want to generate a random sample X1, X2, . . . , Xn with the following PDF:

f(x) =

x−2
2 , 2 ⩽ x ⩽ 3

6−x
6 , 3 < x ⩽ 6

.
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For x ∈ [2, 3], we calculate that:

F (x) = P(X ⩽ x) =
∫ x

2
f(y)dy =

∫ x

2

y − 2
2 dy = x2

4 − x + 1.

For x ∈ (3, 6], we calculate that:

F (x) = P(X ⩽ 3) + P(3 < X ⩽ x) = F (3) +
∫ x

3

6− y

6 dy = 1
4 + x− x2

12 −
9
4 = −x2

12 + x− 2.

For u ∈ [0, F (3)] = [0, 0.25], we calculate that:

F (x) = u⇔ x2 − 4x + 4(1− u) = 0⇔ x = 4±
√

16u

2 = 2
(
1±
√

u
)

.

The solution x = 2 (1−
√

u) ∈ [1, 2] is rejected, so we infer that x = 2 (1 +
√

u) ∈ [2, 3].

For u ∈ (F (3), 1] = (0.25, 1], we calculate that:

F (x) = u⇔ x2 − 12x + 12(u + 2) = 0⇔ x =
12±

√
48(1− u)
2 = 2

[
3±

√
3(1− u)

]
.

The solution x = 2
[
3 +

√
3(1− u)

]
∈ [6, 9) is rejected, so we infer that x = 2

[
3−

√
3(1− u)

]
∈ (3, 6]. Therefore,

we conclude that:

F −1(u) =

 2 (1 +
√

u) , 0 ⩽ u ⩽ 0.25

2
[
3−

√
3(1− u)

]
, 0.25 < u ⩽ 1

.

f = function(x) {

ifelse(x >= 2 & x < 3, (x - 2)/2, ifelse(x >= 3 & x < 6, (6 - x)/6, 0))

}

n = 10000

U = runif(n)

X = ifelse(U <= 0.25, 2 * (1 + sqrt(U)), 2 * (3 - sqrt(3 * (1 - U))))

hist(X, "FD", freq = FALSE, main = NA, xlab = NA)

curve(f(x), add = TRUE, col = "red", lwd = 2)
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Example 1.7. We want to generate a random sample X1, X2, . . . , Xn with PDF f(x) = 1− |1− x| for x ∈ [0, 2].
For x ∈ [0, 1], we calculate that:

F (x) = P(X ⩽ x) =
∫ x

0
f(y)dy =

∫ x

0
ydy = x2

2 .

For x ∈ (1, 2], we calculate that:

F (x) = P(X ⩽ 1) + P(1 < X ⩽ x) = F (1) +
∫ x

1
2− ydy = 1

2 + 2x− x2

2 −
3
2 = −x2

2 + 2x− 1.

For u ∈ [0, F (1)] = [0, 0.5], we calculate that:

F (x) = u⇔ x2 = 2u⇔ x = ±
√

2u.

The solution x = −
√

2u ∈ [−1, 0] is rejected, so we infer that x =
√

2u ∈ [0, 1].

For u ∈ (F (1), 1] = (0.5, 1], we calculate that:

F (x) = u⇔ x2 − 4x + 2(u + 1) = 0⇔ x =
4±

√
8(1− u)
2 = 2±

√
2(1− u).

The solution x = 2 +
√

2(1− u) ∈ [2, 3) is rejected, so we infer that x = 2 −
√

2(1− u) ∈ (1, 2]. Therefore, we
conclude that:

F −1(u) =


√

2u, 0 ⩽ u ⩽ 0.5

2−
√

2(1− u), 0.5 < u ⩽ 1
.

n = 50000

U = runif(n)

X = ifelse(U <= 0.5, sqrt(2 * U), 2 - sqrt(2 * (1 - U)))

hist(X, "FD", freq = FALSE, main = NA, xlab = NA)

curve(1 - abs(1 - x), add = TRUE, col = "red", lwd = 2)
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Lemma 1.3. Consider the independent random variables U, V ∼ Unif[0, 1]. Then, the random variable X = U + V

has PDF f(x) = 1− |1− x| for x ∈ [0, 2].
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Proof. For x ∈ [0, 2], we calculate that:

FX(x) = P(U + V ⩽ x) =
∫ 1

0
P(U ⩽ x− v)fV (v)dv =

∫ 1

0
FU (x− v)dv.

We observe that:

FU (x− v) =


1, v ⩽ x− 1

x− v, x− 1 < v ⩽ x

0, v > x

.

For x ∈ [0, 1], we infer that:

FX(x) =
∫ x

0
x− vdv = x2

2 .

For x ∈ (1, 2], we infer that:

FX(x) =
∫ x−1

0
1dv +

∫ 1

x−1
x− vdv = x− 1 + x− 1

2 − x(x− 1) + (x− 1)2

2 = −x2

2 + 2x− 1.

Therefore, we conclude that:

fX(x) =

 x, 0 ⩽ x ⩽ 1

2− x, 1 < x ⩽ 2
.

We observe that fX(x) = 1− |1− x| = f(x) for x ∈ [0, 2].

n = 50000

U = runif(n)

V = runif(n)

X = U + V

hist(X, "FD", freq = FALSE, main = NA, xlab = NA)

curve(1 - abs(1 - x), add = TRUE, col = "red", lwd = 2)
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Example 1.8. We want to generate a random sample X1, . . . , Xn ∼ Beta(1, k). For x ∈ [0, 1], we know that
f(x) = k(1− x)k−1. We calculate that:

F (x) = 1− (1− x)k, F −1(u) = 1− (1− u)1/k.
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n = 10000

k = 3

U = runif(n)

X = 1 - Uˆ(1/k)

hist(X, "FD", freq = FALSE, main = NA, xlim = c(0, 1), xlab = NA)

curve(dbeta(x, 1, k), add = TRUE, col = "red", lwd = 2)
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Lemma 1.4. Consider independent random variables Yi with common support S and CDFs Fi for i = 1, 2, . . . , k.
Then,

i. The random variable X = max{Y1, . . . , Yk} has the following CDF:

F (x) =
k∏

i=1
Fi(x).

ii. The random variable X = min{Y1, . . . , Yk} has the following CDF:

F (x) = 1−
k∏

i=1
[1− Fi(x)] .

Proof. i. For x ∈ S, we calculate that:

F (x) = P (max{Y1, . . . , Yk} ⩽ x) = P (Y1 ⩽ x, . . . , Yk ⩽ x) =
k∏

i=1
P(Yi ⩽ x) =

k∏
i=1

Fi(x).

ii. For x ∈ S, we calculate that:

F (x) = P (min{Y1, . . . , Yk} ⩽ x) = 1− P (min{Y1, . . . , Yk} > x)

= 1− P (Y1 > x, . . . , Yk > x) = 1−
k∏

i=1
P(Yi > x) = 1−

k∏
i=1

[1− Fi(x)] .
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For x ∈ [0, 1], we observe that:

F (x) = 1−
k∏

i=1
(1− x).

Consider the independent random variables Y1, . . . , Yk ∼ Unif[0, 1] with CDF FY (x) = x for x ∈ [0, 1]. According
to the previous lemma, we infer that the random variable min{Y1, . . . , Yk} has CDF F .

n = 10000

k = 3

U = matrix(runif(n * k), n)

X = apply(U, 1, min)

hist(X, "FD", freq = FALSE, main = NA, xlim = c(0, 1), xlab = NA)

curve(dbeta(x, 1, k), add = TRUE, col = "red", lwd = 2)
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Rejection Method

Consider a PDF f with bounded support S = [0, 1] and independent random variables Y ∼ Unif[0, 1], U ∼ Unif[0, 1].
We define M = maxx∈[0,1] f(x) and V = MU ∼ Unif[0, M ].

Note 1.4. Since f is a PDF with support [0, 1], it must hold that M > 1.

Proposition 1.1. i. The random vector (Y, V ) follows the bivariate uniform distribution on the rectangle with
base [0, 1] and height [0, M ].

ii. The conditional distribution of the random vector (Y, V ) given that f(Y ) ⩾ V is the bivariate uniform
distribution in the area under the curve of f , i.e. on the set {(y, v) ∈ [0, 1]× [0, M ] : f(y) ⩾ v}.

iii. The marginal distribution of Y given that f(Y ) ⩾ V has PDF f .

Proof. i. For y ∈ [0, 1] and v ∈ [0, M ], we calculate that:

FY,V (y, v) = P (Y ⩽ y, V ⩽ v) = P(Y ⩽ y)P(V ⩽ v) = y · v

M
,

fY,V (y, v) = ∂2FY,V (y, v)
∂v∂y

= 1 · 1
M

= 1∫ 1
0
∫M

0 1dvdy
.
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ii. For y ∈ [0, 1] and v ∈ [0, M ] with f(y) ⩾ v, we calculate that:

P [f(Y ) ⩾ V ] =
∫ 1

0
fY (y)P [V ⩽ f(y)] dy =

∫ 1

0

f(y)
M

dy = 1
M

∫ 1

0
f(y)dy = 1

M
,

P [Y ⩽ y, V ⩽ v, f(Y ) ⩾ V ] =
∫ y

0
fY (x)P [V ⩽ v, V ⩽ f(x)] dx = 1

M

∫ y

0
min{v, f(x)}dx,

FY,V |F (Y )⩾V (y, v) = P [Y ⩽ y, V ⩽ v | f(Y ) ⩾ V ] = P [Y ⩽ y, V ⩽ v, f(Y ) ⩾ V ]
P [f(Y ) ⩾ V ] =

∫ y

0
min{v, f(x)}dx,

fY,V |f(Y )⩾V (y, v) =
∂2FY,V |F (Y )⩾V (y, v)

∂v∂y
= ∂ min{v, f(y)}

∂v
= ∂v

∂v
= 1 = 1∫

S

∫ f(y)
0 1dvdy

.

iii. For y ∈ [0, 1], we calculate that:

fY |f(Y )⩾V (y) =
∫ f(y)

0
fY,V |f(Y )⩾V (y, v)dv =

∫ f(y)

0
1dv = f(y).

Example 1.9. We want to generate a random sample X1, . . . , Xn ∼ Beta(4, 2). For x ∈ [0, 1], we know
that f(x) = 20x3(1 − x). For x ∈ (0, 1), we calculate that f ′(x) = 20x2(3 − 4x). Therefore, we infer that
f ′(x) = 0⇔ x = 3/4, which implies that M = f (3/4) = 135/64.

n = 1000

a = 4

b = 2

M = 135/64

print(M)

## [1] 2.109375

Y = runif(n)

U = runif(n)

V = M * U

I = which(dbeta(Y, a, b) >= V)

J = which(dbeta(Y, a, b) < V)

curve(dbeta(x, a, b), lwd = 2, xlab = "Y", ylab = "V")

curve(M * dunif(x), add = TRUE, col = "purple", lwd = 2)

points(Y[I], V[I], col = "blue", pch = 16, cex = 0.2)

points(Y[J], V[J], col = "red", pch = 16, cex = 0.2)

legend("topleft", c(expression(v == f(y)), expression(v == M), "Accepted", "Rejected"),

col = c("black", "purple", "blue", "red"), lty = c(1, 1, NA, NA), lwd = c(2,

2, NA, NA), pch = c(NA, NA, 16, 16), bg = "white")
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Algorithm 1.1 Rejection Method for Bounded Support S = [0, 1]
Input: PDF f and sample size n.

1: We calculate M = maxx∈[0,1] f(x).

2: For i = 1, 2, . . . , n, we iterate the following steps:

i: We generate Y ∼ Unif[0, 1], U ∼ Unif[0, 1] and let V = MU ∼ Unif[0, 1].

ii: If f(Y ) ⩾ V , we let Xi = Y . Otherwise, we return to step 2.

Output: Random sample X1, X2, . . . , Xn following the PDF f .

n = 10000

a = 4

b = 2

M = 135/64

X = numeric(n)

for (i in 1:n) {

Y = runif(1)

U = runif(1)

V = M * U

while (dbeta(Y, a, b) < V) {

Y = runif(1)

U = runif(1)

V = M * U

}

X[i] = Y

}

hist(X, "FD", freq = FALSE, main = NA, xlim = c(0, 1), xlab = NA)

curve(dbeta(x, a, b), add = TRUE, col = "red", lwd = 2)
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Now, let f be a PDF with general support S and g be a proposal PDF with support Sg ⊇ S. Consider the
independent random variables Y ∼ g and U ∼ Unif[0, 1]. We define M = maxx∈S

f(x)
g(x) and V = Mg(Y )U .

Note 1.5. Since f and g are PDFs, it holds that M > 1.

Proposition 1.2. i. The random vector (Y, V ) follows the bivariate uniform distribution in the area under the
curve of Mg, i.e. on the set {(y, v) ∈ Sg × [0,∞] : Mg(y) ⩾ v}.

ii. The conditional distribution of the random vector (Y, V ) given that f(Y ) ⩾ V is the bivariate uniform
distribution in the are under the curve of f , i.e. on the set {(y, v) ∈ S × [0,∞] : f(y) ⩾ v}.

iii. The marginal distribution of Y given that f(Y ) ⩾ V has PDF f .

Proof. i. For y ∈ Sg and v ∈ [0,∞], we calculate that:

FY,V (y, v) = P [Y ⩽ y, V ⩽ v] =
∫ y

−∞
g(x)P [Mg(x)U ⩽ v] dx =

∫ y

−∞
���g(x) · v

M�
��g(x) dx = v

M

∫ y

−∞
1dx,

fY,V (y, v) = ∂2FY,V (y, v)
∂v∂y

= ∂

∂v

v

M
= 1

M
= 1∫

Sg

∫Mg(y)
0 1dvdy

.

ii. For y ∈ S and v ∈ [0,∞] with f(y) ⩾ v, we calculate that:

P [f(Y ) ⩾ V ] =
∫

S

g(y)P [Mg(y)U ⩽ f(y)] dy =
∫

S
���g(y) · f(y)

M���g(y) dy = 1
M

∫
S

f(y)dy = 1
M

,

P [Y ⩽ y, V ⩽ v, f(Y ) ⩾ V ] =
∫ y

−∞
g(x)P [Mg(x)U ⩽ v, Mg(x)U ⩽ f(x)] dx = 1

M

∫ y

−∞
min{v, f(x)}dx,

FY,V |F (Y )⩾V (y, v) = P [Y ⩽ y, V ⩽ v | f(Y ) ⩾ V ] = P [Y ⩽ y, V ⩽ v, f(Y ) ⩾ V ]
P [f(Y ) ⩾ V ] =

∫ y

−∞
min{v, f(x)}dx,

fY,V |f(Y )⩾V (y, v) =
∂2FY,V |F (Y )⩾V (y, v)

∂v∂y
= ∂ min{v, f(y)}

∂v
= ∂v

∂v
= 1 = 1∫

S

∫ f(y)
0 1dvdy

.

iii. For y ∈ S, we calculate that:

fY |f(Y )⩾V (y) =
∫ f(y)

0
fY,V |f(Y )⩾V (y, v)dv =

∫ f(y)

0
1dv = f(y).
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Example 1.10. We want to generate a random sample X1, . . . , Xn ∼ Gamma(2, 0.5) ≡ χ2
4. If we consider a

random variable X ∼ Gamma(2, 0.5), then we observe that E(X) = 2
0.5 = 4. Let Y ∼ Exp(1/4) be a random

variable with proposal PDF g(x) = 1
4 e−x/4 for x > 0. We observe that E(Y ) = 1

1/4 = 4. We define:

h(x) = f(x)
g(x) = xe−x/4

We calculate that:
h′(x) =

(
1− x

4

)
e−x/4.

Therefore, we infer that h′(x) = 0⇔ x = 4, which implies that M = h(4) = 4e−1.

n = 1000

a = 2

lambda = 0.5

M = 4 * exp(-1)

print(M)

## [1] 1.471518

W = runif(n)

Y = -log(W) * a/lambda

U = runif(n)

V = M * dexp(Y, lambda/a) * U

I = which(dgamma(Y, a, lambda) >= V)

J = which(dgamma(Y, a, lambda) < V)

curve(M * dexp(x, lambda/a), xlim = c(0, max(Y)), col = "purple", lwd = 2, xlab = "Y",

ylab = "V")

curve(dgamma(x, a, lambda), add = TRUE, lwd = 2)

points(Y[I], V[I], col = "blue", pch = 16, cex = 0.2)

points(Y[J], V[J], col = "red", pch = 16, cex = 0.2)

legend("topright", c(expression(v == f(y)), expression(v == M %.% g(y)), "Accepted",

"Rejected"), col = c("black", "purple", "blue", "red"), lty = c(1, 1, NA,

NA), lwd = c(2, 2, NA, NA), pch = c(NA, NA, 16, 16))
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Algorithm 1.2 Rejection Sampling for General Support
Input: PDF f , proposal PDF g and sample size n.

1: We calculate that M = maxx∈R
f(x)
g(x) .

2: For i = 1, 2, . . . , n, we iterate the following steps:

i: We generate Y ∼ g, U ∼ Unif[0, 1] and let V = Mg(Y )U .

ii: If f(Y ) ⩾ V , we let Xi = Y . Otherwise, we return to step 2.

Output: Random sample X1, X2, . . . , Xn following the PDF f .

n = 10000

a = 2

lambda = 0.5

M = 4 * exp(-1)

X = numeric(n)

for (i in 1:n) {

W = runif(1)

Y = -log(W) * a/lambda

U = runif(1)

V = M * dexp(Y, lambda/a) * U

while (dgamma(Y, a, lambda) < V) {

W = runif(1)

Y = -log(W) * a/lambda

U = runif(1)

V = M * dexp(Y, lambda/a) * U

}

X[i] = Y

}

hist(X, "FD", freq = FALSE, main = NA, xlab = NA)
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curve(dgamma(x, a, lambda), add = TRUE, col = "red", lwd = 2)
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Theorem 1.2. i. The acceptance probability of Xi given that Y = y is equal to f(y)
Mg(y) .

ii. The generation of Xi requires a finite number of iterations with probability 1. The expected number of
iterations until the generation of Xi is equal to M .

Proof. i. For y ∈ Sg, we calculate that:

P [f(Y ) ⩾ V | Y = y] = P [Mg(y)U ⩽ f(y)] = f(y)
Mg(y) .

ii. We calculated that the acceptance probability of Xi, i.e. P [f(Y ) ⩾ V ], is equal to 1
M . Since every attempt at

generating Xi is independent of the previous ones and each of them succeeds with probability 1
M , we infer that

the number of iterations until the generation of Xi follows the geometric distribution with success probability
1

M . Therefore, the expected number of iterations until the generation of Xi is given by the expectation of this
geometric distribution, which is equal to M .

Note 1.6. The rejection method is more efficient when M is close to 1. In this case, only a small number of
iterations is required for the generation of Xi.

Example 1.11. More generally, we want to generate a random sample X1, . . . , Xn ∼ Gamma (a, λ). Consider a
random variable Y ∼ Exp(µ) with proposal PDF gµ(x) = µe−µx for x > 0. We define:

hµ(x) = f(x)
gµ(x) =

λa

Γ(a) xa−1e−λx

µe−µx
= λa

µΓ(a)xa−1e−(λ−µ)x.

For a > 1, we calculate that:

∂hµ(x)
∂x

= λa

Γ(a)xa−2e−(λ−µ)x [a− 1− (λ− µ)x] ,

∂hµ(x)
∂x

= 0⇔ x = a− 1
λ− µ

,

M(µ) = max
x∈R

hµ(x) = hµ

(
a− 1
λ− µ

)
= λa

µΓ(a)

(
a− 1
λ− µ

)a−1
e−(a−1),
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∂M(µ)
∂µ

= λa

µΓ(a)

(
a− 1
λ− µ

)a−1(
− 1

µ
+ a− 1

λ− µ

)
e−(a−1),

∂M(µ)
∂µ

= 0⇔ µ = λ

a
,

M∗ = min
µ>0

M(µ) = M

(
λ

a

)
= aa

Γ(a)e−(a−1).

Therefore, the value of µ which minimizes the expected number of required iterations for the generation of a
random variable from the Gamma (a, λ) distribution is equal to λ

a and the minimum expected number of required
iterations is equal to aa

Γ(a) e−(a−1).

Note 1.7. We know that χ2(ν) ≡ Gamma
(

ν
2 , 1

2
)
. Therefore, the value of µ which minimizes the expected number

of required iterations for the generation of a random variable from the χ2(ν) distribution for ν > 2 with proposal
PDF g(x) = µe−µx for x > 0 is equal to 1

ν and the minimum expected number of required iterations is equal to(
ν
2
)ν/2 1

Γ(ν/2) e−(ν−2)/2.

Example 1.12. We want to generate a random sample X1, . . . , Xn ∼ N
(
µ, σ2). For x ∈ R, we consider the

proposal PDF:
gλ(x) = λ

2 e−λ|x−µ|.

We define:

hλ(x) = f(x)
gλ(x) =

1√
2πσ2 exp

{
− 1

2σ2 (x− µ)2}
λ
2 e−λ|x−µ|

=
√

2
πσ2

1
λ

exp
{

λ|x− µ| − 1
2σ2 (x− µ)2

}
.

Since the function h is symmetric around x = µ, we study its behavior for x ⩾ µ. We calculate that:

∂hλ(x)
∂x

=
√

2
πσ2

1
λ

(
λ− x− µ

σ2

)
exp

{
λ(x− µ)− 1

2σ2 (x− µ)2
}

,

∂hλ(x)
∂x

= 0⇔ x = µ + σ2λ,

M(λ) = max
x∈R

hλ(x) = hλ

(
µ + σ2λ

)
=
√

2
πσ2

1
λ

eσ2λ2/2,

∂M(λ)
∂λ

=
√

2
πσ2

(
σ2 − 1

λ2

)
eσ2λ2/2,

∂M(λ)
∂λ

= 0⇔ λ = 1
σ

,

M∗ = min
λ>0

M(λ) = M

(
1
σ

)
=
√

2e

π
.

Therefore, the value of λ which minimizes the expected number of required iterations for the generation of a
random variable from the N

(
µ, σ2) distribution is equal to 1

σ and the minimum expected number of required
iterations is equal to

√
2e/π.

n = 1000

mu = 1

sigma = 2

lambda = 1/sigma
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M = sqrt(2 * exp(1)/pi)

print(M)

## [1] 1.315489

W = runif(n)

Y = ifelse(W <= 0.5, mu + log(2 * W)/lambda, mu - log(2 * (1 - W))/lambda)

U = runif(n)

V = M * dexp(abs(Y - mu), lambda)/2 * U

I = which(dnorm(Y, mu, sigma) >= V)

J = which(dnorm(Y, mu, sigma) < V)

curve(M * dexp(abs(x - mu), lambda)/2, xlim = range(Y), col = "purple", lwd = 2,

xlab = "Y", ylab = "V")

curve(dnorm(x, mu, sigma), add = TRUE, lwd = 2)

points(Y[I], V[I], col = "blue", pch = 16, cex = 0.2)

points(Y[J], V[J], col = "red", pch = 16, cex = 0.2)

legend("topright", c(expression(v == f(y)), expression(v == M %.% g(y)), "Accepted",

"Rejected"), col = c("black", "purple", "blue", "red"), lty = c(1, 1, NA,

NA), lwd = c(2, 2, NA, NA), pch = c(NA, NA, 16, 16))
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n = 10000

mu = 1

sigma = 2

lambda = 1/sigma

M = sqrt(2 * exp(1)/pi)

X = numeric(n)

for (i in 1:n) {

W = runif(1)

Y = ifelse(W <= 0.5, mu + log(2 * W)/lambda, mu - log(2 * (1 - W))/lambda)

U = runif(1)
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V = M * dexp(abs(Y - mu), lambda)/2 * U

while (dnorm(Y, mu, sigma) < V) {

W = runif(1)

Y = ifelse(W <= 0.5, mu + log(2 * W)/lambda, mu - log(2 * (1 - W))/lambda)

U = runif(1)

V = M * dexp(abs(Y - mu), lambda)/2 * U

}

X[i] = Y

}

hist(X, "FD", freq = FALSE, main = NA, xlab = NA)

curve(dnorm(x, mu, sigma), add = TRUE, col = "red", lwd = 2)
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Let X be a random variable with absolutely continuous CDF G, PDF g, support S and a, b ∈ S with a < b. We
want to generate a random sample X1, X2, . . . , Xn from the conditional distribution of X given that a ⩽ X ⩽ b.
We know that P(a ⩽ X ⩽ b) = G(b)−G(a). For x ∈ [a, b], we calculate that:

FX|a⩽X⩽b(x) = P (X ⩽ x | a ⩽ X ⩽ b) = P (X ⩽ x, a ⩽ X ⩽ b)
P(a ⩽ X ⩽ b) = P(a ⩽ X ⩽ x)

P(a ⩽ X ⩽ b) = G(x)−G(a)
G(b)−G(a) ,

fX|a⩽X⩽b(x) =
∂FX|a⩽X⩽b(x)

∂x
= g(x)

G(b)−G(a) .

We observe that:

fX|a⩽X⩽b(x)
g(x) =

 1
G(b)−G(a) , x ∈ [a, b]

0, x /∈ [a, b]
, M = max

x∈S

fX|a⩽X⩽b(x)
g(x) = 1

G(b)−G(a) .

If Y ∼ g and U ∼ Unif[0, 1], then it follows that:

P
[
fX|a⩽X⩽b(Y ) ⩾ Mg(Y )U | Y

]
=

fX|a⩽X⩽b(Y )
Mg(Y ) =

1, Y ∈ [a, b]

0, Y /∈ [a, b]
.

In other words, if the generated value Y from the PDF g lies on the given interval [a, b], then it’s accepted with
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probability 1. Otherwise, it’s rejected with probability 1. Therefore, the generation of the random variable U is
redundant.

Example 1.13. Let X ∼ Gamma(3, 0.5), a = 2 and b = 10. We want to generate a random sample X1, X2, . . . , Xn

from the conditional distribution of X given that a ⩽ X ⩽ b.

n = 1000

k = 2

lambda = 0.5

a = 1

b = 11

P = pgamma(b, k, lambda) - pgamma(a, k, lambda)

print(P)

## [1] 0.883232

M = 1/P

print(M)

## [1] 1.132205

W = matrix(runif(n * k), n)

R = -log(W)/lambda

Y = rowSums(R)

U = runif(n)

V = M * dgamma(Y, k, lambda) * U

I = which(Y >= a & Y <= b)

J = which(Y < a | Y > b)

curve(M * dgamma(x, k, lambda), xlim = c(0, max(Y)), lwd = 2, xlab = "Y", ylab = "V")

points(Y[I], V[I], col = "blue", pch = 16, cex = 0.2)

points(Y[J], V[J], col = "red", pch = 16, cex = 0.2)

legend("topright", c(expression(v == f(y)), "Accepted", "Rejected"), col = c("black",

"blue", "red"), lty = c(1, NA, NA), lwd = c(2, NA, NA), pch = c(NA, 16,

16))
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Input: Proposal PDF g, interval [a, b] and sample size n.

For i = 1, 2, . . . , n, we iterate the following steps:

1: We generate Y ∼ g.

2: If Y ∈ [a, b], we let Xi = Y . Otherwise, we return to step 1.

Output: Random sample X1, X2, . . . , Xn.

n = 10000

k = 2

lambda = 0.5

a = 1

b = 11

M = 1/(pgamma(b, k, lambda) - pgamma(a, k, lambda))

X = numeric(n)

for (i in 1:n) {

U = runif(k)

R = -log(U)/lambda

Y = sum(R)

while (Y < a || Y > b) {

U = runif(k)

R = -log(U)/lambda

Y = sum(R)

}

X[i] = Y

}

hist(X, "FD", freq = FALSE, main = NA, xlab = NA)

curve(M * dgamma(x, k, lambda), add = TRUE, col = "red", lwd = 2)
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Note 1.8. We observe that the expected number of iterations until the generation of Xi is equal to:

M = 1
G(b)−G(a) = 1

P(a ⩽ X ⩽ b) > 1.

Therefore, the use of PDF g as a proposal is efficient when the probability P(a ⩽ X ⩽ b) is high. Otherwise, the
use of the uniform distribution on [a, b] as a proposal would be more efficient.

Example 1.14. We want to generate a random sample (X1, Y1, Z1), . . . , (Xn, Yn, Zn) from the uniform distribution
on the set S =

{
(x, y, z) ∈ R3 : x2 + y2 ⩽ 2z, x ⩾ y ⩾ z

}
. We observe that:

x2 + y2 ⩽ 2z ⩽ 2x ⇒ (x− 1)2 + y2 ⩽ 1 ⇒ x ∈ [0, 2], y ∈ [−1, 1],

x2 + y2 ⩽ 2z ⩽ 2y ⇒ x2 + (y − 1)2 ⩽ 1 ⇒ x ∈ [−1, 1], y ∈ [0, 2],

0 ⩽ x2 + y2 ⩽ 2z ⇒ z ⩾ 0.

Be intersecting all of the constraints, we infer that S ⊆ [0, 1]3. Let (X, Y, Z) be a random vector which follows
the uniform distribution on the cube [0, 1]3 with PDF g(x, y, z) = 1 for x, y, z ∈ [0, 1]. We infer that the random
variables X, Y, Z are independent and follow the Unif[0, 1] distribution. Therefore, it suffices to generate a random
sample from the distribution of (X, Y, Z) given that (X, Y, Z) ∈ S.

library(plot3D)

n = 10000

X = runif(n)

Y = runif(n)

Z = runif(n)

I = which(X >= Y & Y >= Z & Xˆ2 + Yˆ2 <= 2 * Z)

J = which(X < Y | Y < Z | Xˆ2 + Yˆ2 > 2 * Z)

scatter3D(X[J], Y[J], Z[J], phi = 0, theta = 45, col = "red", pch = 16, cex = 0.1)

scatter3D(X[I], Y[I], Z[I], phi = 0, theta = 45, col = "blue", add = TRUE, pch = 16,

cex = 0.2)
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library(plot3D)

n = 10000

X = numeric(n)

Y = numeric(n)

Z = numeric(n)

for (i in 1:n) {

X[i] = runif(1)

Y[i] = runif(1)

Z[i] = runif(1)

while (X[i] < Y[i] || Y[i] < Z[i] || X[i]ˆ2 + Y[i]ˆ2 > 2 * Z[i]) {

X[i] = runif(1)

Y[i] = runif(1)

Z[i] = runif(1)

}

}

scatter3D(X, Y, Z, colvar = NA, phi = 0, theta = 45, pch = 16, cex = 0.1)

x y

z

Example 1.15. We want to generate a random sample (X1, Y1), . . . , (Xn, Yn) following the PDF f(x, y) = cx2y3

for (x, y) ∈ S =
{

(x, y) ∈ R2 : x2 + y2 ⩽ 1, x, y ⩾ 0
}
⊆ [0, 1]2. Let X ∼ Beta(3, 1) and Y ∼ Beta(4, 1) be

independent random variables with PDFs fX(x) = 3x2 and fY (y) = 4y3 for x, y ∈ [0, 1]. We observe that
g(x, y) = fX(x)fY (y) = 12x2y3. Therefore, it suffices to generate a random sample from the distribution of (X, Y )
given that (X, Y ) ∈ S. For x, y, u, v ∈ [0, 1], we calculate that FX(x) = x3, FY (y) = y4, F −1

X (u) = u1/3 and
F −1

Y (v) = v1/4.
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n = 10000

U = runif(n)

X = Uˆ(1/3)

V = runif(n)

Y = Vˆ(1/4)

I = which(Xˆ2 + Yˆ2 <= 1)

J = which(Xˆ2 + Yˆ2 > 1)

curve(sqrt(1 - xˆ2), xlim = c(0, 1), lwd = 2, xlab = "X", ylab = "Y")

points(X[I], Y[I], col = "blue", pch = 16, cex = 0.1)

points(X[J], Y[J], col = "red", pch = 16, cex = 0.1)

legend("bottomleft", c(expression(y == sqrt(1 - xˆ2)), "Accepted", "Rejected"),

col = c("black", "blue", "red"), lty = c(1, NA, NA), lwd = c(2, NA, NA),

pch = c(NA, 16, 16))
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library(plot3D)

n = 50000

X = numeric(n)

Y = numeric(n)

for (i in 1:n) {

U = runif(1)

V = runif(1)

X[i] = Uˆ(1/3)

Y[i] = Vˆ(1/4)

while (X[i]ˆ2 + Y[i]ˆ2 > 1) {

U = runif(1)

V = runif(1)

X[i] = Uˆ(1/3)

Y[i] = Vˆ(1/4)

}
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}

hist3D(z = table(cut(X, 20), cut(Y, 20)), colkey = FALSE, phi = 0, theta = 315,

border = 1)

xy

z

Box-Muller Transform

Let X, Y ∼ N (0, 1) be independent random variables. Then, we calculate that:

fX,Y (x, y) = fX(x)fY (y) = 1√
2π

e−x2/2 · 1√
2π

e−y2/2 = 1
2π

e−(x2+y2)/2.

We consider the change to polar coordinates D = X2 + Y 2, Θ = arctan Y
X or equivalently X =

√
D cos Θ,

Y =
√

D sin Θ. For d > 0 and θ ∈ [0, 2π], we calculate that:

JX,Y (d, θ) = ∂(x, y)
∂(d, θ) =

[
∂x
∂d

∂x
∂θ

∂y
∂d

∂y
∂θ

]
=
[

cos θ
2

√
d
−
√

d sin θ
sin θ
2

√
d

√
d cos θ

]
,

det [JX,Y (d, θ)] = 1
2 cos2 θ + 1

2 sin2 θ = 1
2 ,

fD,Θ(d, θ) = |det [JX,Y (d, θ)]| fX,Y

(√
d cos θ,

√
d sin θ

)
= 1

2 ·
1

2π
e−d/2 = 1

2e−d/2 · 1
2π

.

Therefore, we conclude that the random variables D and Θ are independent with D ∼ Exp(1/2) ≡ χ2
2 and

Θ ∼ Unif[0, 2π].

Note 1.9. If Z ∼ N (0, 1), µ ∈ R and σ > 0, then X = σZ + µ ∼ N
(
µ, σ2).

Algorithm 1.3 Box-Muller Transform
Input: Expected value µ, standard deviation σ and sample size n.

For i = 1, 2, . . . , n/2, we iterate the following steps:

1: We generate U ∼ Unif[0, 1] and let D = −2 log U ∼ Exp(1/2).

2: We generate V ∼ Unif[0, 1] and let Θ = 2πV ∼ Unif[0, 2π].

3: We let Z1 =
√

D cos Θ ∼ N (0, 1) and Z2 =
√

D sin Θ ∼ N (0, 1).

4: We let X2i−1 = σZ1 + µ ∼ N
(
µ, σ2) and X2i = σZ2 + µ ∼ N

(
µ, σ2).

Output: Random sample X1, X2, . . . , Xn.
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n = 10000

mu = 1

sigma = 2

U = runif(n/2)

D = -2 * log(U)

V = runif(n/2)

Theta = 2 * pi * V

Z = sqrt(D) * c(cos(Theta), sin(Theta))

X = sigma * Z + mu

hist(X, "FD", freq = FALSE, main = NA, xlab = NA)

curve(dnorm(x, mu, sigma), add = TRUE, col = "red", lwd = 2)
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Discrete Random Variable Generation

Let X be a discrete random variable with support S = N and PMF pj = P(X = j) for j = 0, 1, . . .. For x ∈ N, we
calculate that:

F (x) = P(X ⩽ x) =
x∑

j=0
pj ,

F −(u) = inf

x ∈ S :
x∑

j=0
pj ⩾ u

 =



0, 0 ⩽ u ⩽ p0

1, p0 < u ⩽ p0 + p1

2, p0 + p1 < u ⩽ p0 + p1 + p2

· · ·

.

Example 1.16. We want to generate a random sample X1, X2, . . . , Xn following the PMF p1 = 0.2, p2 = 0.15,
p3 = 0.25, p4 = 0.4. We calculate that:

F −(u) =



1, 0 ⩽ u ⩽ 0.2

2, 0.2 < u ⩽ 0.35

3, 0.35 < u ⩽ 0.6

4, 0.6 < u ⩽ 1

.
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n = 10000

S = 1:4

pmf = c(0.2, 0.15, 0.25, 0.4)

X = numeric(n)

for (i in 1:n) {

U = runif(1)

j = 1

cdf = pmf[1]

while (U > cdf) {

j = j + 1

cdf = cdf + pmf[j]

}

X[i] = S[j]

}

table(factor(X, levels = S))/n

##

## 1 2 3 4

## 0.2010 0.1511 0.2511 0.3968

Note 1.10. Since the algorithm goes through the support of the random variable X from start to finish and it’s
more likely for X to take values with higher probability, it’s more computationally efficient to sort the PMF of the
random variable in decreasing order and then simulate from it.

n = 10000

S = 1:4

pmf = c(0.2, 0.15, 0.25, 0.4)

I = order(pmf, decreasing = TRUE)

pmf = pmf[I]

S = I[S]

X = numeric(n)

for (i in 1:n) {

U = runif(1)

j = 1

cdf = pmf[1]

while (U > cdf) {

j = j + 1

cdf = cdf + pmf[j]

}

X[i] = S[j]

}

table(factor(X, levels = S))/n

##

## 4 3 1 2
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## 0.4027 0.2454 0.1946 0.1573

Example 1.17. We want to generate a finite path X1, X2, . . . , Xn from a discrete-time Markov chain with finite
state-space S = {1, 2, . . . , m}, initial distribution a = [ak] and transition probability matrix P = [pk,ℓ]. We know
that:

P (X1 = x1, X2 = x2, . . . , Xn = xn) = P(X1 = x1)P (X2 = x2 | X1 = x1) · · ·P (Xn = xn | Xn−1 = xn−1)

= ax1px1,x2 · · · pxn−1,xn .

Input: State-space S, initial distribution a, transition probability matrix P and path length n.

1: We generate X1 from the initial distribution a.

2: For i = 2, 3, . . . , n, we iterate the following step:

i: We generate Xi following the PMF which is given by row Xi−1 of the transition probability matrix P .

Output: Path X1, X2, . . . , Xn.

n = 100

m = 4

S = 1:m

a = c(0.2, 0.15, 0.25, 0.4)

P = rbind(c(0.1, 0.2, 0.3, 0.4), c(0.2, 0.5, 0.2, 0.1), c(0.2, 0.1, 0.6, 0.1),

c(0.7, 0.1, 0.1, 0.1))

rownames(P) = S

colnames(P) = S

print(P)

## 1 2 3 4

## 1 0.1 0.2 0.3 0.4

## 2 0.2 0.5 0.2 0.1

## 3 0.2 0.1 0.6 0.1

## 4 0.7 0.1 0.1 0.1

X = numeric(n)

U = runif(1)

j = 1

cdf = a[1]

while (U > cdf) {

j = j + 1

cdf = cdf + a[j]

}

X[1] = S[j]

for (i in 2:n) {

pmf = P[X[i - 1], ]

U = runif(1)

j = 1
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cdf = pmf[1]

while (U > cdf) {

j = j + 1

cdf = cdf + pmf[j]

}

X[i] = S[j]

}

plot(X, type = "b", pch = 16, lwd = 2)
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Example 1.18. We want to generate a random sample X1, . . . , Xn ∼ Poisson(λ). For j = 0, 1, . . ., we know that:

pj = e−λ λj

j! .

We observe that:
p0 = e−λ, pj+1 = λ

j + 1pj .

n = 10000

lambda = 10

X = numeric(n)

for (i in 1:n) {

U = runif(1)

pmf = exp(-lambda)

cdf = pmf

while (U > cdf) {

X[i] = X[i] + 1

pmf = pmf * lambda/X[i]

cdf = cdf + pmf

}

}
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barplot(table(factor(X, levels = 0:max(X)))/n, space = 0)

lines(0:max(X) + 0.5, dpois(0:max(X), lambda), col = "red", lwd = 2)
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Let {N(t) : t ⩾ 0} be a Poisson process with rate λ and inter-arrival times Y1, Y2, · · · ∼ Exp(λ). We know that:

N(1) = sup

k ∈ N :
k∑

j=1
Yj ⩽ 1

 = inf

k ∈ N :
k+1∑
j=1

Yj > 1

 ∼ Poisson(λ).

Input: Rate λ and sample size n.

For i = 1, 2, . . . , n, we iterate the following steps:

1: We let S ← 0 and k ← 0.

2: We generate U ∼ Unif[0, 1], let Y = − 1
λ log U ∼ Exp(λ) and let S ← S + Y .

3: If S > 1, then we let Xi = k. Otherwise, we let k ← k + 1 and return to step 2.

Output: Random sample X1, X2, . . . , Xn following the Poisson(λ) distribution.

n = 10000

lambda = 10

X = numeric(n)

for (i in 1:n) {

S = 0

while (S <= 1) {

U = runif(1)

Y = -log(U)/lambda

S = S + Y

if (S <= 1) {

X[i] = X[i] + 1

}

}

}
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barplot(table(factor(X, levels = 0:max(X)))/n, space = 0)

lines(0:max(X) + 0.5, dpois(0:max(X), lambda), col = "red", lwd = 2)
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Example 1.19. We want to generate a random sample X1, . . . , Xn ∼ Unif{1, 2, . . . , k}. For x ∈ S, we calculate
that:

F (x) = P(X ⩽ x) = x

k
,

F −(u) = inf
{

x ∈ S : u ⩽
x

k

}
= inf {x ∈ S : x ⩾ ku} = ⌊ku⌋+ 1.

n = 10000

k = 5

U = runif(n)

X = floor(k * U) + 1

table(factor(X, levels = 1:k))/n

##

## 1 2 3 4 5

## 0.2010 0.2017 0.2005 0.1903 0.2065

Example 1.20. We want to generate a random sample X1, . . . , Xn ∼ Unif{a, a+ 1, . . . , b}. For x ∈ S, we calculate
that:

F (x) = P(X ⩽ x) = x− a + 1
b− a + 1 ,

F −(u) = inf
{

x ∈ S : u ⩽
x− a + 1
b− a + 1

}
= inf {x ∈ S : x ⩾ (b− a + 1)u + a− 1} = ⌊(b− a + 1)u⌋+ a.

n = 10000

a = -1

b = 3

U = runif(n)

X = floor((b - a + 1) * U) + a

table(factor(X, levels = a:b))/n

##
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## -1 0 1 2 3

## 0.2010 0.2017 0.2005 0.1903 0.2065

Example 1.21. We want to generate a random sample X1, . . . , Xn ∼ Geom(p) with PMF pj = p(1 − p)j for
j = 0, 1, . . .. For x ∈ N, we calculate that:

F (x) = P(X ⩽ x) = p
x∑

j=0
(1− p)j = p · 1− (1− p)x+1

1− (1− p) = 1− (1− p)x+1,

F −(u) = min
{

x ∈ N : 1− (1− p)x+1 ⩾ u
}

= min {x ∈ N : (x + 1) log(1− p) ⩽ log(1− u)}

= min
{

x ∈ N : x ⩾
log(1− u)
log(1− p) − 1

}
=
⌊

log(1− u)
log(1− p)

⌋
.

n = 10000

p = 0.4

U = runif(n)

X = floor(log(U)/log(1 - p))

barplot(table(factor(X, levels = 0:max(X)))/n, space = 0)

lines(0:max(X) + 0.5, dgeom(0:max(X), p), col = "red", lwd = 2)
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Example 1.22. We want to generate a random sample X1, . . . , Xn ∼ Bernoulli(p). We calculate that:

F −(u) =

0, 0 ⩽ u ⩽ 1− p

1, 1− p < u ⩽ 1
=

1, 0 ⩽ 1− u < p

0, p ⩽ 1− u ⩽ 1
.

n = 10000

p = 0.4

U = runif(n)

X = as.numeric(U < p)

table(factor(X, levels = 0:1))/n

##

## 0 1
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## 0.5973 0.4027

Example 1.23. We want to generate a random sample X1, . . . , Xn ∼ Bin(k, p). For j = 0, 1, . . . , k, we know that:

pj =
(

k

j

)
pj(1− p)k−j .

We observe that:
p0 = (1− p)k, pj+1 = k − j

j + 1
p

1− p
pj .

n = 10000

k = 20

p = 0.4

X = numeric(n)

for (i in 1:n) {

U = runif(1)

pmf = (1 - p)ˆk

cdf = pmf

while (U > cdf) {

pmf = pmf * (k - X[i])/(X[i] + 1) * p/(1 - p)

cdf = cdf + pmf

X[i] = X[i] + 1

}

}

barplot(table(factor(X, levels = 0:k))/n, space = 0)

lines(0:k + 0.5, dbinom(0:k, k, p), col = "red", lwd = 2)

0 2 4 6 8 10 12 14 16 18 20

0.
00

0.
05

0.
10

0.
15

Let Y1, . . . , Yk ∼ Bernoulli(p) be independent random variables. Then, we know that Y1 + · · ·+ Yk ∼ Bin(k, p).

n = 10000

k = 20

p = 0.4

U = matrix(runif(n * k), n)

Y = U < p
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X = rowSums(Y)

barplot(table(factor(X, levels = 0:k))/n, space = 0)

lines(0:k + 0.5, dbinom(0:k, k, p), col = "red", lwd = 2)
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Example 1.24. We want to generate a random sample X1, . . . , Xn ∼ NegBin(k, p) with the following PMF
pj =

(
j+k−1

j

)
pk(1− p)j for j = 0, 1, . . .. We observe that:

p0 = pk, pj+1 = j + k

j + 1 (1− p)pj .

n = 10000

k = 20

p = 0.6

X = numeric(n)

for (i in 1:n) {

U = runif(1)

pmf = pˆk

cdf = pmf

while (U > cdf) {

pmf = pmf * (1 - p) * (X[i] + k)/(X[i] + 1)

cdf = cdf + pmf

X[i] = X[i] + 1

}

}

barplot(table(factor(X, levels = 0:max(X)))/n, space = 0)

lines(0:max(X) + 0.5, dnbinom(0:max(X), k, p), col = "red", lwd = 2)
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Let Y1, . . . , Yk ∼ Geom(p) be independent random variables. Then, we know that Y1 + · · ·+ Yk ∼ NegBin(k, p).

n = 10000

k = 20

p = 0.6

U = matrix(runif(n * k), n)

Y = floor(log(U)/log(1 - p))

X = rowSums(Y)

barplot(table(factor(X, levels = 0:max(X)))/n, space = 0)

lines(0:max(X) + 0.5, dnbinom(0:max(X), k, p), col = "red", lwd = 2)
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We know that the negative binomial distribution represents the number of failures until the k-th success in
independent Bernoulli trials with common success probability p.

n = 10000

k = 20

p = 0.6

X = numeric(n)

for (i in 1:n) {

success = 0
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while (success < k) {

U = runif(1)

Y = as.numeric(U < p)

if (Y == 0) {

X[i] = X[i] + 1

} else {

success = success + 1

}

}

}

barplot(table(factor(X, levels = 0:max(X)))/n, space = 0)

lines(0:max(X) + 0.5, dnbinom(0:max(X), k, p), col = "red", lwd = 2)
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Example 1.25. We want to generate a random sample X(1), . . . , X(n) ∼ Multinomial(m, p1, . . . , pk). Let
Y1, Y2, . . . , Ym be independent random variables with PMF p = [pj ]. Then, we know that:(

m∑
ℓ=1

1{Yℓ=1}, . . . ,

m∑
ℓ=1

1{Yℓ=k}

)
∼ Multinomial(m, p1, . . . , pk).

n = 10000

m = 50

p = c(0.3, 0.1, 0.4, 0.2)

k = length(p)

X = matrix(0, n, k)

for (i in 1:n) {

Y = numeric(m)

for (j in 1:m) {

U = runif(1)

l = 1

cdf = p[1]

while (U > cdf) {
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l = l + 1

cdf = cdf + p[l]

}

Y[j] = l

}

X[i, ] = table(factor(Y, levels = 1:k))

}

colMeans(X)

## [1] 15.0163 4.9851 20.0457 9.9529

Let X = (X1, X2, . . . , Xk) ∼ Multinomial(m, p1, . . . , pk). Then, we observe that:

P(X = x) = P (X1 = x1, X2 = x2, . . . , Xk = xk)

= P(X1 = x1)P (X2 = x2 | X1 = x1) · · ·P (Xn = xn | X1 = x1, . . . , Xn−1 = xn−1) .

For x1 ∈ {0, 1, . . . , m}, we calculate according to the multinomial theorem that:

P(X1 = x1) =
∑

x2+···+xn=m−x1

P (X = x) =
∑

x2+···+xn=m−x1

m!
x1!x2! · · ·xk!p

x1
1 px2

2 · · · p
xk

k

= m!
x1!(m− x1)!p

x1
1

∑
x2+···+xn=m−x1

(m− x1)!
x2! · · ·xk!p

x2
2 · · · p

xk

k =
(

m

x1

)
px1

1 (p2 + · · ·+ pk)m−x1

=
(

m

x1

)
px1

1 (1− p1)m−x1 ,

i.e. X1 ∼ Bin(m, p1). For x2 ∈ {0, 1, . . . , m− x1}, we calculate that:

P(X1 = x1, X2 = x2) =
∑

x3+···+xn=m−x1−x2

P (X = x) =
∑

x3+···+xn=m−x1−x2

m!
x1!x2! · · ·xk!p

x1
1 px2

2 · · · p
xk

k

= m!
x1!x2!(m− x1 − x2)!p

x1
1 px2

2

∑
x3+···+xn=m−x1−x2

(m− x1 − x2)!
x3! · · ·xk! px3

3 · · · p
xk

k

= m!
x1!x2!(m− x1 − x2)!p

x1
1 px2

2 (p3 + · · ·+ pk)m−x1−x2

= m!
x1!x2!(m− x1 − x2)!p

x1
1 px2

2 (1− p1 − p2)m−x1−x2 ,

P (X2 = x2 | X1 = x1) = P (X1 = x1, X2 = x2)
P(X1 = x1) =

m!
x1!x2!(m−x1−x2)! p

x1
1 px2

2 (1− p1 − p2)m−x1−x2

m!
x1!(m−x1)! p

x1
1 (1− p1)m−x1

=
(

m− x1

x2

)(
p2

1− p1

)x2 (
1− p2

1− p1

)m−x1−x2

,

i.e. (X2 | X1 = x1) ∼ Bin
(

m− x1, p2
1−p1

)
. For ℓ = 2, 3, . . . , k − 2, we calculate that:

(Xℓ+1 | X1 = x1, . . . , Xℓ = xℓ) ∼ Bin
(

m− x1 − · · · − xℓ,
pℓ+1

1− p1 − · · · − pℓ

)
.
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Finally, we observe that:

P (Xk = xk | X1 = x1, . . . , Xk−1 = xk−1) =

1, xk = m− x1 − · · · − xk−1

0, xk ̸= m− x1 − · · · − xk−1

.

n = 10000

m = 50

p = c(0.3, 0.1, 0.4, 0.2)

k = length(p)

X = matrix(0, n, k)

for (i in 1:n) {

trials = m

prob = 1

for (l in 1:(k - 1)) {

U = runif(trials)

X[i, l] = sum(U < p[l]/prob)

trials = trials - X[i, l]

prob = prob - p[l]

}

X[i, k] = trials

}

colMeans(X)

## [1] 15.0006 4.9823 20.0646 9.9525

Note 1.11. The first simulation method is more efficient when m≪ k, whereas the second simulation method is
more efficient when k ≪ m.

Example 1.26. We want to generate a random sample X(1), . . . , X(n) ∼ Hypergeom(m, r1, . . . , rk) with PMF:

P(X = x) = P (X1 = x1, X2 = x2, . . . , Xk = xk) =
(

r1
x1

)(
r2
x2

)
· · ·
(

rk

xk

)(
r1+r2+···+rk

m

) .

n = 10000

m = 50

r = c(30, 10, 40, 20)

k = length(r)

X = matrix(0, n, k)

for (i in 1:n) {

count = r

total = sum(r)

for (j in 1:m) {

pmf = count/total

U = runif(1)

l = 1
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cdf = pmf[1]

while (U > cdf) {

l = l + 1

cdf = cdf + pmf[l]

}

X[i, l] = X[i, l] + 1

count[l] = count[l] - 1

total = total - 1

}

}

colMeans(X)

## [1] 15.0137 4.9887 20.0386 9.9590

Composition Method

Let X be a random variable with CDF FX(x) and absolutely continuous random variable Y with PDF fY (y). We
know that:

FX(x) = P(X ⩽ x) =
∫
R
P(X ⩽ x | Y = y)fY (y)dy =

∫
R

FX|Y (x | y)fY (y)dy.

Example 1.27. For x ∈ [0, 1], we want to generate a random sample X1, X2, . . . , Xn following the CDF:

F (x) =
∫ ∞

0
xye−ydy.

Consider the PDF g(y) = e−y for y > 0, i.e. consider the random variable Y ∼ Exp(1). For x ∈ [0, 1], we calculate
that:

F (x) = P(X ⩽ x) =
∫ ∞

0
P (X ⩽ x | Y = y) g(y)dy,

which implies that FX|Y (x | y) = P (X ⩽ x | Y = y) = xy and F −1
X|Y (u | y) = u1/y.

Input: CDFs FY , FX|Y and sample size n.

For i = 1, 2, . . . , n, we iterate the following steps:

1: We generate U ∼ Unif[0, 1] and let Y = F −1
Y (U).

2: We generate V ∼ Unif[0, 1] and let Xi = F −
X|Y (V | Y ).

Output: Random sample X1, X2, . . . , Xn following the CDF FX .

n = 10000

U = runif(n)

Y = -log(U)

V = runif(n)

X = Vˆ(1/Y)

hist(X, "FD", freq = FALSE, main = NA, xlab = NA)

curve(1/(x * (1 - log(x))ˆ2), add = TRUE, col = "red", lwd = 2)
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For x ∈ [0, 1], we can directly calculate that:

F (x) =
∫ ∞

0

( e

x

)−y

dy =
[
− 1

log e
x

( e

x

)−y
]∞

y=0
= 1

1− log x
, F −1(u) = e1−1/u, f(x) = 1

x (1− log x)2 .

n = 10000

U = runif(n)

X = exp(1 - 1/U)

hist(X, "FD", freq = FALSE, main = NA, xlab = NA)

curve(1/(x * (1 - log(x))ˆ2), add = TRUE, col = "red", lwd = 2)
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Example 1.28. We want to generate a random sample X1, X2, . . . , Xn ∼ tν . Consider independent random
variables Z ∼ N (0, 1) and Y ∼ χ2(ν) ≡ Gamma

(
ν
2 , 1

2
)
. Then, we know that:

X = Z√
Y/ν

∼ tν .

We observe that:
(X | Y = y) = Z√

y/ν
∼ N

(
0,

ν

y

)
.
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n = 10000

nu = 10

M = (nu/2)ˆ(nu/2)/gamma(nu/2) * exp(-(nu - 2)/2)

Y = numeric(n)

for (i in 1:n) {

W = runif(1)

Y[i] = -nu * log(W)

U = runif(1)

V = M * dexp(Y[i], 1/nu) * U

while (dchisq(Y[i], nu) < V) {

W = runif(1)

Y[i] = -nu * log(W)

U = runif(1)

V = M * dexp(Y[i], 1/nu) * U

}

}

U = runif(n/2)

D = -2 * log(U)

V = runif(n/2)

Theta = 2 * pi * V

Z = sqrt(D) * c(cos(Theta), sin(Theta))

X = sqrt(nu/Y) * Z

hist(X, "FD", freq = FALSE, main = NA, xlab = NA)

curve(dt(x, nu), add = TRUE, col = "red", lwd = 2)
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Example 1.29. Let {N(t) : t ⩾ 0} be a Poisson process with rate 1 which counts the number of coin tosses up
to time t. For p ∈ [0, 1], the coin comes up “H” with probability p and “T” with probability 1 − p. Consider
the Poisson processes {NH(t) : t ⩾ 0} with rate p and {NT (t) : t ⩾ 0} with rate 1 − p, which count the number
of “H” and “T” respectively up to time t. We know that the processes {NH(t) : t ⩾ 0} and {NT (t) : t ⩾ 0} are
independent and constitute a thinning of the process {N(t) : t ⩾ 0}. We know that the event count in the process
{NT (t) : t ⩾ 0} up to the k-th event in the process {NH(t) : t ⩾ 0} follows the NegBin(k, p) distribution. However,
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the event count NT (t) up to time t follows the Poisson ((1− p)t) distribution and the time Sk up to the k-th “H”
follows the Gamma(k, p) distribution. For j = 0, 1, . . ., we verify that:

P (NT (Sk) = j) =
∫ ∞

0
P (NT (Sk) = j | Sk = y) fSk

(y)dy =
∫ ∞

0
P (NT (y) = j | Sk = y) fSk

(y)dy

=
∫ ∞

0
P (NT (y) = j) fSk

(y)dy =
∫ ∞

0
e−(1−p)y [(1− p)y]j

j!
pk

(k − 1)!y
k−1e−pydy

= 1
j!(k − 1)!p

k(1− p)j

∫ ∞

0
yj+k−1e−ydy = 1

j!(k − 1)!p
k(1− p)j · (j + k − 1)!

1j+k

=
(

j + k − 1
j

)
pk(1− p)j .

n = 10000

k = 20

p = 0.6

U = matrix(runif(n * k), n)

R = -log(U)/p

Y = rowSums(R)

X = numeric(n)

for (i in 1:n) {

S = 0

while (S <= Y[i]) {

U = runif(1)

R = -log(U)/(1 - p)

S = S + R

if (S <= Y[i]) {

X[i] = X[i] + 1

}

}

}

barplot(table(factor(X, levels = 0:max(X)))/n, space = 0)

lines(0:max(X) + 0.5, dnbinom(0:max(X), k, p), col = "red", lwd = 2)
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Let X be a random variable with CDF FX(x) and discrete random variable Y with PMF w = [wj ]. Additionally,
we define the conditional CDFs Fj(x) = FX|Y (x | j) for j = 0, 1, . . .. We know that:

FX(x) = P(X ⩽ x) =
∞∑

j=0
P(Y = j)P(X ⩽ x | Y = j) =

∞∑
j=0

wjFX|Y (x | j) =
∞∑

j=0
wjFj(x).

The CDF FX is called a mixture distribution.

Note 1.12. i. If F0, F1, . . . are absolutely continuous CDFs with corresponding PDFs f0, f1, . . . , then F is an
absolutely continuous CDF with corresponding PDF:

f(x) =
∞∑

j=0
wjfj(x).

ii. If the CDFs F0, F1, . . . are step functions with corresponding PMFs p(0), p(1), . . . , then the CDF F is a step
function with corresponding PMF:

pℓ =
∞∑

j=0
wjp

(j)
ℓ .

Example 1.30. For x ∈ [0, 1], we want to generate a random sample X1, X2, . . . , Xn with CDF:

F (x) =
k∑

j=1
wjxj ,

where w = [wj ] is a PMF. We observe that the CDFs Fj(x) = xj correspond to the Beta(j, 1) distributions and
calculate that F −1

j (u) = u1/j .

n = 10000

S = 1:4

w = c(0.4, 0.3, 0.2, 0.1)

Y = numeric(n)

for (i in 1:n) {

U = runif(1)

j = 1

cdf = w[1]

while (U > cdf) {

j = j + 1

cdf = cdf + w[j]

}

Y[i] = S[j]

}

U = runif(n)

X = Uˆ(1/Y)

hist(X, "FD", freq = FALSE, main = NA, xlim = c(0, 1), xlab = NA)

curve(w[1] * dbeta(x, 1, 1) + w[2] * dbeta(x, 2, 1) + w[3] * dbeta(x, 3, 1) +

w[4] * dbeta(x, 4, 1), add = TRUE, col = "red", lwd = 2)

43



D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Example 1.31. For j = 0, 1, . . ., we want to generate a random sample X1, X2, . . . , Xn with PMF:

pj = 1
2j+2 + 1

3j+1 .

We observe that:

pj = 1
2︸︷︷︸

w1

·
(

1
2

)j 1
2︸ ︷︷ ︸

p
(1)
j

+ 1
2︸︷︷︸

w2

·
(

1
3

)j 2
3︸ ︷︷ ︸

p
(2)
j

.

Additionally, we observe that the PMF p(1) corresponds to the geometric distribution with success probability 1
2 ,

whereas the PMF p(2) corresponds to the geometric distribution with success probability 2
3 .

n = 10000

w = c(0.5, 0.5)

p = c(0.5, 2/3)

U = runif(n)

Y = ifelse(U < w[1], 1, 2)

V = runif(n)

X = floor(log(V)/log(1 - p[Y]))

barplot(table(factor(X, levels = 0:max(X)))/n, space = 0)

lines(0:max(X) + 0.5, w[1] * dgeom(0:max(X), p[1]) + w[2] * dgeom(0:max(X),

p[2]), col = "red", lwd = 2)
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Lemma 1.5. If X ∼ Exp(λ) and µ ∈ R, then the random variable W1 = µ−X follows the PDF fW1(x) = λe−λ(µ−x)

for x < µ.

Proof. For x < µ, we calculate that:

FW1(x) = P (W1 ⩽ x) = P (X ⩾ µ− x) = e−λ(µ−x), fW1(x) = ∂FW1(x)
∂x

= λe−λ(µ−x).

Note 1.13. We have shown that the random variable W2 = µ + X follows the PDF fW2(x) = λe−λ(x−µ) for x ⩾ µ.

Example 1.32. For x ∈ R, we want to generate a random sample X1, X2, . . . , Xn with PDF:

f(x) = λ

2 e−λ|x−µ|.

We observe that:

f(x) =

 1
2 λe−λ(µ−x), x < µ

1
2 λe−λ(x−µ), x ⩾ µ

.

Therefore, we infer that:
f(x) = 1

2fW1(x) + 1
2fW2(x).

n = 10000

lambda = 2

mu = 1

U = runif(n)

Y = ifelse(U < 0.5, 1, 2)

V = runif(n)

X = ifelse(Y == 1, mu + log(V)/lambda, mu - log(V)/lambda)

hist(X, "FD", freq = FALSE, main = NA, xlab = NA)

curve(dexp(abs(x - mu), lambda)/2, add = TRUE, col = "red", lwd = 2)
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Example 1.33. We want to generate a random sample X1, X2, . . . , Xn with CDF:

F (x) =

 1−e−2x+2x
3 , 0 ⩽ x ⩽ 1

3−e−2x

3 , x > 1
.

For x ⩾ 0, we define the following CDFs:

F1(x) = 1− e−2x, F2(x) =

x, 0 ⩽ x ⩽ 1

1, x > 1
.

We observe that:
F (x) = 1

3F1(x) + 2
3F2(x).

Additionally, we observe that F1 is the CDF of the exponential distribution with parameter 2, whereas F2 is the
CDF of the uniform distribution on [0, 1].

n = 10000

w = c(1/3, 2/3)

lambda = 2

U = runif(n)

Y = ifelse(U < w[1], 1, 2)

V = runif(n)

X = ifelse(Y == 1, -log(V)/lambda, V)

hist(X, "FD", freq = FALSE, main = NA, xlab = NA)

curve(w[1] * dexp(x, lambda) + w[2] * dunif(x), add = TRUE, col = "red", lwd = 2)
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Example 1.34. For x ⩾ 0, we want to generate a random sample X1, X2, . . . , Xn with CDF:

F (x) = 2− e−9x

2 .

We define the CDFs F1(x) = 1− e−9x and F2(x) = 1. We observe that:

F (x) = 1
2F1(x) + 1

2F2(x).

Additionally, we observe that F1 is the CDF of the exponential distribution with parameter 9, whereas F2 is the
CDF of the degenerate random variable Y = 0.

n = 10000

w = c(0.5, 0.5)

lambda = 9

U = runif(n)

Y = ifelse(U < w[1], 1, 2)

V = runif(n)

X = ifelse(Y == 1, -log(V)/lambda, 0)

hist(X[Y == 1], "FD", freq = FALSE, main = NA, xlab = NA)

curve(dexp(x, lambda), add = TRUE, col = "red", lwd = 2)
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We observe that F (0) = 0.5. For u ∈ [0, 0.5], it follows F −(u) = 0. For u ∈ (0.5, 1], we calculate that:

F (x) = u⇔ x = −1
9 log [2(1− u)] .

Therefore, we infer that:

F −(u) =

 0, 0 ⩽ u ⩽ 0.5

− 1
9 log [2(1− u)] , 0.5 < u ⩽ 1

.

n = 10000

U = runif(n)

X = ifelse(U <= 0.5, 0, -log(2 * (1 - U))/lambda)

hist(X[U > 0.5], "FD", freq = FALSE, main = NA, xlab = NA)

curve(dexp(x, lambda), add = TRUE, col = "red", lwd = 2)
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2 Monte Carlo Method

We want to approximate the following integral:

I =
∫ 1

0
g(x)dx.

We know that the random variable U ∼ Unif[0, 1] follows the PDF f(x) = 1 for x ∈ [0, 1]. Hence, we observe that:

I =
∫ 1

0
g(x)f(x)dx = E [g(U)] .

Let U1, U2, . . . , Un be a random sample from the Unif[0, 1] distribution. According to the strong law of large
numbers, we know that:

1
n

n∑
i=1

g(Ui)
a.s.→ E [g(U)] = I.

Example 2.1. We want to approximate the following integral:

I =
∫ 1

0
eex

dx.

n = 1e+05

U = runif(n)

I = mean(exp(exp(U)))

print(I)

## [1] 6.318484

Example 2.2. We want to approximate the following integral:

I =
∫ 1

0

∫ 1

0
e(x+y)2

dxdy.

Consider the independent random variables U, V ∼ Unif[0, 1] with PDF fU,V (u, v) = fU (u)fV (v) = 1 for u, v ∈ [0, 1].
Then, we observe that I = E

[
e(U+V )2

]
.

n = 1e+05

U = runif(n)

V = runif(n)

I = mean(exp((U + V)ˆ2))

print(I)

## [1] 4.886297

More generally, we want to approximate the following interval:

I =
∫

S

g(x)dx.
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Consider the random variable X with PDF f(x) and support S. If we let h(x) = g(x)
f(x) , then we observe that:

I =
∫

S

g(x)
f(x) · f(x)dx = E [h(X)] .

Let X1, X2, . . . , Xn be a random sample following the PDF f(x). According to the strong law of large numbers,
we know that:

1
n

n∑
i=1

h(Xi)
a.s.→ E [h(X)] = I.

Example 2.3. We want to approximate the following integral:

I =
∫ 2

−2
ex+x2

dx.

Consider the random variable X ∼ Unif[−2, 2] with PDF f(x) = 1
4 for x ∈ [−2, 2]. Then, we observe that:

I =
∫ 2

−2
4ex+x2 1

4dx = E
(

4eX+X2
)

.

n = 1e+05

U = runif(n)

X = 4 * U - 2

I = mean(4 * exp(X + Xˆ2))

print(I)

## [1] 93.76997

Example 2.4. We want to approximate the following integral:

I =
∫ ∞

0

x

(1 + x2)2 dx.

Consider the random variable X ∼ Exp(1) with PDF f(x) = e−x for x > 0. Then, we observe that:

I =
∫ ∞

0

xex

(1 + x2)2 e−xdx = E

[
XeX

(1 + X2)2

]
.

n = 1e+05

U = runif(n)

X = -log(U)

I = mean(X * exp(X)/(1 + Xˆ2)ˆ2)

print(I)

## [1] 0.4993482

Example 2.5. We want to approximate the following integral:

I =
∫ ∞

−∞
x4e−x2

dx.
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Consider the random variable X ∼ N (0, 0.5) with PDF f(x) = 1√
π

e−x2 for x ∈ R. Then, we observe that:

I =
∫ ∞

−∞

√
πx4 1√

π
e−x2

dx = E
(√

πX4) .

n = 1e+05

U = runif(n/2)

D = -2 * log(U)

V = runif(n/2)

Theta = 2 * pi * V

Z = sqrt(D) * c(cos(Theta), sin(Theta))

X = Z/sqrt(2)

I = mean(sqrt(pi) * Xˆ4)

print(I)

## [1] 1.328683

Example 2.6. We want to approximate the following integral:

I =
∫ ∞

2
e−x2/2 sin(2πx)dx.

Consider the random variable X with PDF f(x) = 4e−4(x−2) for x > 2. Then, we observe that:

I =
∫ ∞

2

1
4e−x2/2+4x−8 sin(2πx) · 4e−4(x−2)dx = E

[
1
4e−(X−4)2/2 sin(2πX)

]
.

n = 1e+05

U = runif(n)

X = 2 - log(U)/4

I = mean(exp(-(X - 4)ˆ2/2) * sin(2 * pi * X)/4)

print(I)

## [1] 0.01963348

Example 2.7. We want to approximate the following integral:

I =
∫ ∞

0

∫ x

0
e−(x+y)dydx.

Consider the random variables X, Y with X ∼ Exp(1) and (Y | X = x) ∼ Unif[0, x]. For x > 0 and y ∈ [0, x], we
observe that:

fX,Y (x, y) = fX(x)fY |X(y | x) = e−x 1
x

.

Therefore, we calculate that

I =
∫ ∞

0

∫ x

0
xe−y e−x

x
dydx = E

(
Xe−Y

)
.

n = 1e+05

U = runif(n)
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X = -log(U)

V = runif(n)

Y = X * V

I = mean(X * exp(-Y))

print(I)

## [1] 0.4984331

Note 2.1. We know that P(A) = E (1A).

Example 2.8. We want to approximate the value of the constant π. Consider the independent random variables
U, V ∼ Unif[0, 1]. Then, we calculate that:

P
(
U2 + V 2 ⩽ 1

)
= P

(
U ⩽

√
1− V 2

)
=
∫ 1

0

∫ √
1−v2

0
1dudv

=
∫ 1

0

√
1− v2dv

v=sin x=
∫ π/2

0

√
1− sin2 x cos xdx =

∫ π/2

0
cos2 xdx

=
∫ π/2

0

1 + cos(2x)
2 dx =

[
x

2 + sin(2x)
4

]π/2

x=0
= π

4 .

Therefore, we observe that:
π = 4P

(
U2 + V 2 ⩽ 1

)
= E

(
4 · 1{U2+V 2⩽1}

)
.

n = 1e+06

U = runif(n)

V = runif(n)

mean(4 * (Uˆ2 + Vˆ2 <= 1))

## [1] 3.141728

Example 2.9. Let X1, . . . , Xk ∼ N
(
µ, σ2) be a random sample. We define:

X = 1
k

k∑
j=1

Xj , S2 = 1
k − 1

k∑
j=1

(
Xj −X

)2
.

We know that the 100(1− α)% equal-tailed confidence interval for the parameter µ is equal to:

I(X) =
[
X − tk−1;α/2

S√
k

, X + tk−1;α/2
S√
k

]
.

Additionally, we know by construction that P [µ ∈ I(X)] = 1− α. We want to verify that the interval I(X) has
coverage 100(1−α)% for the parameter µ. We consider the random samples X(1), . . . , X(n) following the N

(
µ, σ2)

distribution and construct the corresponding confidence intervals I(1), . . . , I(n). According to the strong law of
large numbers, it must hold that:

1
n

n∑
i=1

1{µ∈I(i)}
a.s→ E

[
1{µ∈I(X)}

]
= P [µ ∈ I(X)] = 1− α.
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n = 10000

k = 10

mu = 1

sigma = 2

alpha = 0.05

U = matrix(runif(k * n/2), n/2)

D = -2 * log(U)

V = matrix(runif(k * n/2), n/2)

Theta = 2 * pi * V

Z = rbind(sqrt(D) * cos(Theta), sqrt(D) * sin(Theta))

X = sigma * Z + mu

Xbar = rowMeans(X)

S = apply(X, 1, sd)

I = cbind(Xbar - qt(alpha/2, k - 1, lower.tail = FALSE) * S/sqrt(k), Xbar +

qt(alpha/2, k - 1, lower.tail = FALSE) * S/sqrt(k))

100 * mean(I[, 1] <= mu & mu <= I[, 2])

## [1] 94.78

Example 2.10. Let X1, . . . , Xk ∼ N
(
µ, σ2) be a random sample. We know that the statistic of the one-sided

test of the hypotheses H0 : µ = µ0 vs. H1 : µ < µ0 is equal to:

T (X) = X − µ0

S/
√

k
.

Additionally, we know that T (X) ∼ tk−1 under the null hypothesis H0. We define the p-value p(X) = Ftk−1 (T (X)).
We reject H0 at statistical significance level α if T (X) < −tk−1;α or p(X) < α. The type I error probability is
equal to Pµ0 [T (X) < −tk−1;α] = α and the power is equal to β(µ) = Pµ [T (X) < −tk−1;α]. We want to study
the distribution of the statistic T (X) and the p-value p(X) under the hypotheses H0 and H1. We consider the
random samples X(1), . . . , X(n) following the distributions N

(
µ, σ2) and conduct the corresponding hypothesis

tests. Furthermore, we want to verify that the test has type I error probability equal to α independent of n, k, µ

and σ. Finally, we want to study the change in power of the test for different values of k, µ, σ and α.

Proposition 2.1. If the random variable X has absolutely continuous CDF F , then it holds that:

U = F (X) ∼ Unif[0, 1].

Proof. We calculate that:

FU (u) = P [F (X) ⩽ u] = P
[
X ⩽ F −1(u)

]
= F

(
F −1(u)

)
= u.

Corollary 2.1. It holds that p(X) ∼ Unif[0, 1] under the null hypothesis H0.
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Proof. The statistic T (X) follows the tk−1 distribution under H0. Therefore, we infer that:

p(X) = Ftk−1 (T (X)) ∼ Unif[0, 1].

n = 10000

k = 10

mu = 1

sigma = 2

mu0 = 1

alpha = 0.05

U = matrix(runif(k * n/2), n/2)

D = -2 * log(U)

V = matrix(runif(k * n/2), n/2)

Theta = 2 * pi * V

Z = rbind(sqrt(D) * cos(Theta), sqrt(D) * sin(Theta))

X = sigma * Z + mu

Xbar = rowMeans(X)

S = apply(X, 1, sd)

t = (Xbar - mu0) * sqrt(k)/S

hist(t, "FD", freq = FALSE, main = NA, xlab = expression(Test ~ Statistic ~

under ~ H[0]))

curve(dt(x, k - 1), add = TRUE, col = "red", lwd = 2)
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p = pt(t, k - 1)

hist(p, "FD", freq = FALSE, main = NA, xlim = c(0, 1), xlab = expression(P -

Value ~ under ~ H[0]))

curve(dunif(x), add = TRUE, col = "red", lwd = 2)
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P − Value under H0
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mean(t < qt(alpha, k - 1))

## [1] 0.0523

n = 10000

k = 10

mu = 0

sigma = 2

mu0 = 1

alpha = 0.05

U = matrix(runif(k * n/2), n/2)

D = -2 * log(U)

V = matrix(runif(k * n/2), n/2)

Theta = 2 * pi * V

Z = rbind(sqrt(D) * cos(Theta), sqrt(D) * sin(Theta))

X = sigma * Z + mu

Xbar = rowMeans(X)

S = apply(X, 1, sd)

t = (Xbar - mu0) * sqrt(k)/S

hist(t, "FD", freq = FALSE, main = NA, xlab = expression(Test ~ Statistic ~

under ~ H[1]))

curve(dt(x, k - 1), add = TRUE, col = "red", lwd = 2)
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Test Statistic under H1
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p = pt(t, k - 1)

hist(p, "FD", freq = FALSE, main = NA, xlim = c(0, 1), xlab = expression(P -

Value ~ under ~ H[1]))

curve(dunif(x), add = TRUE, col = "red", lwd = 2)

P − Value under H1
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beta = mean(t < qt(alpha, k - 1))

print(beta)

## [1] 0.4231

n = 10000

k = seq(5, 100, 5)

mu = 0

sigma = 2

mu0 = 1

alpha = 0.05
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beta = numeric(length(k))

for (j in 1:length(k)) {

U = matrix(runif(k[j] * n/2), n/2)

D = -2 * log(U)

V = matrix(runif(k[j] * n/2), n/2)

Theta = 2 * pi * V

Z = rbind(sqrt(D) * cos(Theta), sqrt(D) * sin(Theta))

X = sigma * Z + mu

Xbar = rowMeans(X)

S = apply(X, 1, sd)

t = (Xbar - mu0) * sqrt(k[j])/S

beta[j] = mean(t < qt(alpha, k[j] - 1))

}

plot(k, beta, "b", xlab = "Sample Size", ylab = "Power", pch = 16, lwd = 2)
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n = 10000

k = 10

mu = seq(-1, 1, 0.1)

sigma = 2

mu0 = 1

alpha = 0.05

beta = numeric(length(mu))

for (j in 1:length(mu)) {

U = matrix(runif(k * n/2), n/2)

D = -2 * log(U)

V = matrix(runif(k * n/2), n/2)

Theta = 2 * pi * V

Z = rbind(sqrt(D) * cos(Theta), sqrt(D) * sin(Theta))

X = sigma * Z + mu[j]
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Xbar = rowMeans(X)

S = apply(X, 1, sd)

t = (Xbar - mu0) * sqrt(k)/S

beta[j] = mean(t < qt(alpha, k - 1))

}

plot(mu, beta, "b", xlab = "Mean", ylab = "Power", pch = 16, lwd = 2)
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n = 10000

k = 10

mu = 0

sigma = seq(0.1, 2, 0.1)

mu0 = 1

alpha = 0.05

beta = numeric(length(sigma))

for (j in 1:length(sigma)) {

U = matrix(runif(k * n/2), n/2)

D = -2 * log(U)

V = matrix(runif(k * n/2), n/2)

Theta = 2 * pi * V

Z = rbind(sqrt(D) * cos(Theta), sqrt(D) * sin(Theta))

X = sigma[j] * Z + mu

Xbar = rowMeans(X)

S = apply(X, 1, sd)

t = (Xbar - mu0) * sqrt(k)/S

beta[j] = mean(t < qt(alpha, k - 1))

}

plot(sigma, beta, "b", xlab = "Standard Deviation", ylab = "Power", pch = 16,

lwd = 2)
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n = 10000

k = 10

mu = 0

sigma = 2

mu0 = 1

alpha = seq(0.01, 0.2, 0.01)

beta = numeric(length(alpha))

for (j in 1:length(alpha)) {

U = matrix(runif(k * n/2), n/2)

D = -2 * log(U)

V = matrix(runif(k * n/2), n/2)

Theta = 2 * pi * V

Z = rbind(sqrt(D) * cos(Theta), sqrt(D) * sin(Theta))

X = sigma * Z + mu

Xbar = rowMeans(X)

S = apply(X, 1, sd)

t = (Xbar - mu0) * sqrt(k)/S

beta[j] = mean(t < qt(alpha[j], k - 1))

}

plot(alpha, beta, "b", xlab = "Significance Level", ylab = "Power", pch = 16,

lwd = 2)

59



0.05 0.10 0.15 0.20

0.
2

0.
4

0.
6

Significance Level

P
ow

er

We want to approximate the sum of the following series:

S =
∞∑

j=0
aj .

Consider the random variable X with PMF p = [pj ]. If we let bj = aj

pj
, then we observe that:

S =
∞∑

j=0
pj

aj

pj
= E (bX) .

Let X1, X2, . . . , Xn be a random sample following the PMF p = [pj ]. According to the strong law of large numbers,
we know that:

1
n

n∑
i=1

bXi

a.s.→ E (bX) = S.

Example 2.11. We want to approximate the sum of the following series:

S =
∞∑

j=0

e−j2

j! .

Consider the random variable X ∼ Poisson(1) with PMF pj = e−1/j! for j = 0, 1, . . .. Then, we observe that:

S =
∞∑

j=0

e−1

j! e1−j2
= E

(
e1−X2

)
.

n = 1e+05

X = numeric(n)

for (i in 1:n) {

U = runif(1)

pmf = exp(-1)

cdf = pmf
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while (U > cdf) {

X[i] = X[i] + 1

pmf = pmf/X[i]

cdf = cdf + pmf

}

}

I = mean(exp(1 - Xˆ2))

print(I)

## [1] 1.37738

Lemma 2.1. Let X be a non-negative and discrete random variable. Then, it holds that:

E(X) =
∞∑

k=0
P(X > k).

Proof. We observe that:

E(X) =
∞∑

j=0
jP(X = j) =

∞∑
j=0

j−1∑
k=0

P(X = j) =
∞∑

k=0

∞∑
j=k+1

P(X = j) =
∞∑

k=0
P(X > k).

Note 2.2. We know that Var(X) = E
[
(X − E(X))2

]
.

Example 2.12. Let X1, X2, . . . be a sequence of non-negative and discrete random variables. We want to
approximate the expected value and the variance of the following random variable:

N = sup {k ∈ N : X1 < X2 < · · · < Xk−1} .

For k ∈ N, we observe that:
P(N > k) = P(X1 < X2 < · · · < Xk) = 1

k! .

Therefore, we calculate that:

E(N) =
∞∑

k=0
P(N > k) =

∞∑
k=0

1
k! = e.

n = 1e+05

N = numeric(n)

for (i in 1:n) {

Uold = runif(1)

Unew = runif(1)

N[i] = 2

while (Uold < Unew) {

Uold = Unew

Unew = runif(1)

N[i] = N[i] + 1

61



}

}

I = mean(N)

print(I)

## [1] 2.71821

mean((N - I)ˆ2)

## [1] 0.7690844

Example 2.13. We roll k fair dice and we want to estimate the expected minimum number of rolls until all of the
possible sums of their faces appear as a function of k.

n = 1000

k = 1:4

I = numeric(length(k))

for (j in 1:length(k)) {

N = numeric(n)

for (i in 1:n) {

S = numeric(6 * k[j])

while (sum(S == 0) > k[j] - 1) {

U = runif(k[j])

Y = floor(6 * U) + 1

X = sum(Y)

S[X] = S[X] + 1

N[i] = N[i] + 1

}

}

I[j] = mean(N)

}

plot(k, I, "b", xlab = "Number of Dice", ylab = "Expected Number of Rolls",

pch = 16, lwd = 2)
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Example 2.14. We want to estimate the probability that at least 2 out of k people have their birthday on the
same day of the year as a function of k.

n = 10000

k = 1:40

I = numeric(length(k))

for (j in 1:length(k)) {

found = logical(n)

for (i in 1:n) {

D = numeric(365)

l = 0

while (!found[i] && l < k[j]) {

U = runif(1)

X = floor(365 * U) + 1

if (D[X] == 1) {

found[i] = TRUE

} else {

D[X] = D[X] + 1

l = l + 1

}

}

}

I[j] = mean(found)

}

plot(k, I, "b", xlab = "Number of People", ylab = "Probability of Sharing Birthday",

pch = 16, lwd = 2)
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Example 2.15. Consider a square of side 2k for k ∈ N centered on the axis origin. A body performs a random
walk on the pairs of integers starting from the axis origin until it arrives at the border of the square. We want to
estimate the expected number of steps it will take as a function of k.

n = 10000

k = 1:10

I = numeric(length(k))

for (j in 1:length(k)) {

N = numeric(n)

for (i in 1:n) {

X = 0

Y = 0

while (abs(X) < k[j] && abs(Y) < k[j]) {

U = runif(1)

if (U <= 0.25) {

X = X + 1

} else if (U <= 0.5) {

Y = Y + 1

} else if (U <= 0.75) {

X = X - 1

} else {

Y = Y - 1

}

N[i] = N[i] + 1

}

}

I[j] = mean(N)

}

plot(k, I, "b", xlab = "Side Half-Length", ylab = "Expected Number of Steps",
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pch = 16, lwd = 2)
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3 Discrete-Event Simulation

Consider a M/M/1 queuing system, where the arrival process is Poisson with rate λ and the service times follow
the Exp(µ) distribution. We want to simulate the state of the system over time.

Input: Arrival rate λ and service rate µ.

We let Q← 0, D ←∞, we simulate A ∼ Exp(λ) and we iterate the following steps:

1: We let t← min{A, D}.

2: If t = A, then:

i: We let Q← Q + 1, we simulate R ∼ Exp(λ) and we let A← t + R.

ii: If Q = 1, then we simulate X ∼ Exp(µ) and we let D ← t + X.

If t = D, then:

i: We let Q← Q− 1.

ii: If Q > 0, then we simulate X ∼ Exp(µ) and we let D ← t + X. Otherwise, We let D ←∞.

Example 3.1. Consider a M/M/1 queuing system, where the arrival process is Poisson with rate λ and the
service times follow the Exp(µ) distribution. The partial busy period of the system is defined as the time period
between an arrival which finds the system empty until a departure which leaves the system again empty. We want
to estimate the average duration of a partial busy period and the expected maximum number of customers present
in the system during a partial busy period.

n = 10000

lambda = 4

mu = 6

Y = numeric(n)

M = numeric(n)

for (i in 1:n) {

U = runif(1)

A = -log(U)/lambda

t = A

Q = 1

Y[i] = t

M[i] = 1

U = runif(1)

A = t - log(U)/lambda

V = runif(1)

D = t - log(V)/mu

while (Q > 0) {

t = min(A, D)

if (t == A) {

Q = Q + 1

U = runif(1)
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A = t - log(U)/lambda

if (Q == 1) {

V = runif(1)

D = t - log(V)/mu

}

M[i] = max(M[i], Q)

} else {

Q = Q - 1

if (Q > 0) {

V = runif(1)

D = t - log(V)/mu

} else {

D = Inf

}

}

}

Y[i] = t - Y[i]

}

mean(Y)

## [1] 0.4986261

mean(M)

## [1] 1.9508

Example 3.2. Consider a M/Es/1 queuing system, where the arrival process is Poisson with rate λ and the
service times follow the Gamma(s, µ) distribution. Suppose that there exists some time point T ∗ after which no
new arrivals in the system are allowed, but the server continues servicing all customers who were already present in
the system before time T ∗. We want to estimate the expected overtime put in by the server, the average sojourn
time (total time a customer spends in the system) and the expected total idle time of the server.

n = 1000

lambda = 10

mu = 40

s = 3

Tstar = 100

S = numeric(n)

I = numeric(n)

O = numeric(n)

for (i in 1:n) {

Q = 0

U = runif(1)

A = -log(U)/lambda

t = A

N = 0
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temp = 0

arrivals = numeric(0)

while (t < Tstar || Q > 0) {

if (t == A) {

Q = Q + 1

U = runif(1)

A = t - log(U)/lambda

if (A > Tstar) {

A = Inf

}

if (Q == 1) {

V = runif(s)

D = t - log(prod(V))/mu

I[i] = I[i] + t - temp

}

N = N + 1

arrivals = c(arrivals, t)

} else {

Q = Q - 1

if (Q > 0) {

V = runif(s)

D = t - log(prod(V))/mu

} else {

D = Inf

temp = t

}

S[i] = S[i] + t - arrivals[1]

arrivals = arrivals[-1]

}

t = min(A, D)

}

S[i] = S[i]/N

O[i] = max(temp - Tstar, 0)

}

mean(S)

## [1] 0.2221672

mean(O)

## [1] 0.1529004

mean(I)

## [1] 25.13479
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Example 3.3. Consider a M/M/1 queuing system, where the arrival process is Poisson with rate λ and the service
times follow the Exp(µ) distribution. When the system becomes empty, the server goes on working vacation and
returns back to the normal working period only if there are s customers in the system. We want to estimate the
expected percentage of time until time point T ∗ when there are at least m customers in the system.

n = 1000

lambda = 4

mu = 6

s = 10

m = 12

Tstar = 100

P = numeric(n)

for (i in 1:n) {

Q = 0

U = runif(1)

A = -log(U)/lambda

D = Inf

t = A

vacation = TRUE

while (t < Tstar) {

if (t == A) {

Q = Q + 1

U = runif(1)

A = t - log(U)/lambda

if (Q == s && vacation) {

V = runif(1)

D = t - log(V)/mu

vacation = FALSE

}

if (Q == m) {

temp = t

}

} else {

Q = Q - 1

if (Q > 0) {

V = runif(1)

D = t - log(V)/mu

} else {

D = Inf

vacation = TRUE

}

if (Q == m - 1) {

P[i] = P[i] + t - temp

}
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}

t = min(A, D)

}

if (Q >= m) {

P[i] = P[i] + Tstar - temp

}

P[i] = 100 * P[i]/Tstar

}

mean(P)

## [1] 8.75385

Example 3.4. Consider a M/M/1 queuing system, where the arrival process is Poisson with rate λ and the service
times follow the Exp(µ) distribution. Suppose that each customer waits in the queue for a time period which
follows the Unif[0, ν] distribution before departing without getting serviced. We want to estimate the average
number of lost customers until time T ∗.

n = 1000

lambda = 5

mu = 4

nu = 5

Tstar = 100

L = numeric(n)

for (i in 1:n) {

Q = 0

U = runif(1)

A = -log(U)/lambda

t = A

R = numeric(0)

while (t < Tstar) {

if (t == A) {

Q = Q + 1

U = runif(1)

A = t - log(U)/lambda

if (Q == 1) {

V = runif(1)

D = t - log(V)/mu

} else {

W = runif(1)

R = c(R, t + nu * W)

}

} else if (t == D) {

Q = Q - 1

if (Q > 0) {
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V = runif(1)

D = t - log(V)/mu

R = R[-1]

} else {

D = Inf

}

} else {

Q = Q - 1

R = R[-which.min(R)]

L[i] = L[i] + 1

}

t = min(A, D, R)

}

}

mean(L)

## [1] 118.119

Example 3.5. Consider a M/M/1 queuing system, where the arrival process is Poisson with rate λ and the
service times follow the Exp(µ) distribution. Suppose that each customer waits in the queue for a time period
which follows the Unif[0, ν] distribution before departing without getting serviced. Suppose also that, every time a
service is completed, the customer with the shortest departure time from the system is chosen to be served next.
We want to compare the average number of lost customers until time T ∗ with that of the previous example.

n = 1000

lambda = 5

mu = 4

nu = 5

Tstar = 100

L = numeric(n)

for (i in 1:n) {

Q = 0

U = runif(1)

A = -log(U)/lambda

t = A

R = numeric(0)

while (t < Tstar) {

if (t == A) {

Q = Q + 1

U = runif(1)

A = t - log(U)/lambda

if (Q == 1) {

V = runif(1)

D = t - log(V)/mu
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} else {

W = runif(1)

R = c(R, t + nu * W)

}

} else if (t == D) {

Q = Q - 1

if (Q > 0) {

V = runif(1)

D = t - log(V)/mu

R = R[-which.min(R)]

} else {

D = Inf

}

} else {

Q = Q - 1

R = R[-which.min(R)]

L[i] = L[i] + 1

}

t = min(A, D, R)

}

}

mean(L)

## [1] 100.265

Example 3.6. Consider a queuing network constituting of two serial M/M/1 queuing systems, where the arrival
process at the first system is Poisson with rate λ and the services times at system j follow the Exp(µj) distribution.
Suppose that there exists some time point T ∗ after which no new arrivals in the system are allowed, but the servers
continue servicing all customers already present in the network before time T ∗. We want to estimate the average
sojourn time of a customer within each of the two systems.

n = 1000

lambda = 4

mu1 = 5

mu2 = 6

Tstar = 100

S1 = numeric(n)

S2 = numeric(n)

for (i in 1:n) {

Q1 = 0

Q2 = 0

U = runif(1)

A = -log(U)/lambda

D2 = Inf
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t = A

N = 0

A1 = numeric(0)

A2 = numeric(0)

while (t < Tstar || Q1 > 0 || Q2 > 0) {

if (t == A) {

Q1 = Q1 + 1

U = runif(1)

A = t - log(U)/lambda

if (A > Tstar) {

A = Inf

}

if (Q1 == 1) {

V = runif(1)

D1 = t - log(V)/mu1

}

N = N + 1

A1 = c(A1, t)

} else if (t == D1) {

Q1 = Q1 - 1

Q2 = Q2 + 1

if (Q1 > 0) {

V = runif(1)

D1 = t - log(V)/mu1

} else {

D1 = Inf

}

if (Q2 == 1) {

W = runif(1)

D2 = t - log(W)/mu2

}

A2 = c(A2, t)

S1[i] = S1[i] + t - A1[1]

A1 = A1[-1]

} else {

Q2 = Q2 - 1

if (Q2 > 0) {

W = runif(1)

D2 = t - log(W)/mu2

} else {

D2 = Inf

}

S2[i] = S2[i] + t - A2[1]
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A2 = A2[-1]

}

t = min(A, D1, D2)

}

S1[i] = S1[i]/N

S2[i] = S2[i]/N

}

mean(S1)

## [1] 0.9374927

mean(S2)

## [1] 0.4806224

Example 3.7. Consider a M/M/c queuing system, where the arrival process is Poisson with rate λ and the service
times follow the Exp(µ) distribution. We want to estimate the average sojourn time of a customer in the system
and the expected percentage of the first N∗ services which are performed by each of the servers.

n = 1000

c = 2

lambda = 6

mu = c(4, 3)

Nstar = 1000

S = numeric(n)

P = matrix(0, n, c)

for (i in 1:n) {

Q = 0

U = runif(1)

A = -log(U)/lambda

D = rep(Inf, c)

N = 0

arrivals = numeric(0)

while (N < Nstar || Q > 0) {

t = min(A, D)

if (t == A) {

Q = Q + 1

N = N + 1

if (N < Nstar) {

U = runif(1)

A = t - log(U)/lambda

} else {

A = Inf

}

if (Q <= c) {

I = match(Inf, D)
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V = runif(1)

D[I] = t - log(V)/mu[I]

S[i] = S[i] + D[I] - t

} else {

arrivals = c(arrivals, t)

}

} else {

Q = Q - 1

I = which.min(D)

if (Q >= c) {

V = runif(1)

D[I] = t - log(V)/mu[I]

S[i] = S[i] + D[I] - arrivals[1]

arrivals = arrivals[-1]

} else {

D[I] = Inf

}

P[i, I] = P[i, I] + 1

}

}

S[i] = S[i]/Nstar

P[i, ] = P[i, ]/Nstar

}

mean(S)

## [1] 1.021141

colMeans(P)

## [1] 0.58169 0.41831

Example 3.8. Consider a M/M/c queuing system, where the arrival process is Poisson with rate λ and the service
times follow the Exp(µ) distribution. Suppose that there exists some time point T ∗ when the system breaks down
and the customers who haven’t already finished getting serviced are lost. We want to estimate the average sojourn
time in the system of a customer who has finished getting serviced before time point T ∗, the average number of
lost customers and the probability of losing more than 2 customers.

n = 1000

c = 2

lambda = 6

mu = c(4, 3)

Tstar = 100

S = numeric(n)

Q = numeric(n)

for (i in 1:n) {

U = runif(1)
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A = -log(U)/lambda

D = rep(Inf, c)

t = A

N = 0

arrivals = numeric(0)

while (t < Tstar) {

if (t == A) {

Q[i] = Q[i] + 1

U = runif(1)

A = t - log(U)/lambda

if (Q[i] <= c) {

I = match(Inf, D)

V = runif(1)

D[I] = t - log(V)/mu[I]

if (D[I] < Tstar) {

S[i] = S[i] + D[I] - t

}

} else {

arrivals = c(arrivals, t)

}

} else {

Q[i] = Q[i] - 1

I = which.min(D)

if (Q[i] >= c) {

V = runif(1)

D[I] = t - log(V)/mu[I]

if (D[I] < Tstar) {

S[i] = S[i] + D[I] - arrivals[1]

}

arrivals = arrivals[-1]

} else {

D[I] = Inf

}

N = N + 1

}

t = min(A, D)

}

S[i] = S[i]/N

}

mean(S)

## [1] 0.9902442
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mean(Q)

## [1] 6.151

mean(Q > 2)

## [1] 0.655

Example 3.9. Consider a queuing network consisting of two parallel M/M/1 queuing systems, where the arrival
process at the network is Poisson with rate λ and the service times at system j follow the Exp(µj) distribution.
Suppose that an arriving customer enters the system with the shortest queue or the first system if both have the
same number of customers. We want to estimate the average sojourn time of a customer in the system and the
expected percentage of the first N∗ customers who enter the first system.

n = 1000

lambda = 6

mu1 = 4

mu2 = 3

Nstar = 1000

S = numeric(n)

P = numeric(n)

for (i in 1:n) {

Q1 = 0

Q2 = 0

U = runif(1)

A = -log(U)/lambda

D1 = Inf

D2 = Inf

N = 0

A1 = numeric(0)

A2 = numeric(0)

while (N < Nstar || Q1 > 0 || Q2 > 0) {

t = min(A, D1, D2)

if (t == A) {

if (Q1 <= Q2) {

Q1 = Q1 + 1

if (Q1 == 1) {

V = runif(1)

D1 = t - log(V)/mu1

}

A1 = c(A1, t)

} else {

Q2 = Q2 + 1

if (Q2 == 1) {

W = runif(1)

D2 = t - log(W)/mu2
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}

A2 = c(A2, t)

}

N = N + 1

if (N < Nstar) {

U = runif(1)

A = t - log(U)/lambda

} else {

A = Inf

}

} else if (t == D1) {

Q1 = Q1 - 1

if (Q1 > 0) {

V = runif(1)

D1 = t - log(V)/mu1

} else {

D1 = Inf

}

P[i] = P[i] + 1

S[i] = S[i] + t - A1[1]

A1 = A1[-1]

} else {

Q2 = Q2 - 1

if (Q2 > 0) {

W = runif(1)

D2 = t - log(W)/mu2

} else {

D2 = Inf

}

S[i] = S[i] + t - A2[1]

A2 = A2[-1]

}

}

S[i] = S[i]/Nstar

P[i] = P[i]/Nstar

}

mean(S)

## [1] 1.072401

mean(P)

## [1] 0.583024

Example 3.10. Consider a queuing network consisting of two parallel M/M/1 queuing systems, where the arrival
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process at the network is Poisson with rate λ and the service times at system j follow the Exp(µj) distribution.
Suppose that an arriving customer enters the first system with probability p, where p is the estimated percentage
of the first N∗ customers who enter the first system of the previous example. We want to compare the average
sojourn time of a customer in the system with that of the previous example.

n = 1000

lambda = 6

mu1 = 4

mu2 = 3

Nstar = 1000

p = mean(P)

S = numeric(n)

for (i in 1:n) {

Q1 = 0

Q2 = 0

U = runif(1)

A = -log(U)/lambda

D1 = Inf

D2 = Inf

N = 0

A1 = numeric(0)

A2 = numeric(0)

while (N < Nstar || Q1 > 0 || Q2 > 0) {

t = min(A, D1, D2)

if (t == A) {

U = runif(1)

if (U < p) {

Q1 = Q1 + 1

if (Q1 == 1) {

V = runif(1)

D1 = t - log(V)/mu1

}

A1 = c(A1, t)

} else {

Q2 = Q2 + 1

if (Q2 == 1) {

W = runif(1)

D2 = t - log(W)/mu2

}

A2 = c(A2, t)

}

N = N + 1

if (N < Nstar) {

U = runif(1)
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A = t - log(U)/lambda

} else {

A = Inf

}

} else if (t == D1) {

Q1 = Q1 - 1

if (Q1 > 0) {

V = runif(1)

D1 = t - log(V)/mu1

} else {

D1 = Inf

}

S[i] = S[i] + t - A1[1]

A1 = A1[-1]

} else {

Q2 = Q2 - 1

if (Q2 > 0) {

W = runif(1)

D2 = t - log(W)/mu2

} else {

D2 = Inf

}

S[i] = S[i] + t - A2[1]

A2 = A2[-1]

}

}

S[i] = S[i]/Nstar

}

mean(S)

## [1] 1.827888

Example 3.11. Consider a system which requires N machines for it to function. Suppose that there exist s

backup machines in the system. Every machine functions for a time period which follows the Exp(λ) distribution
before breaking down. Whenever a machine breaks down, it’s immediately replaced by a backup and it’s sent
to the repair shop. A repairman fixes the machines in time which follows the Exp(µ) distribution. As soon as a
machine gets fixed, it becomes available as a backup for whenever it might be needed. The system stops working
when a machine breaks down and there’s no backup to replace it. We want to estimate the expected amount of
time until the system stops working.

n = 1e+05

lambda = 1

mu = 2

s = 3
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N = 4

C = numeric(n)

for (i in 1:n) {

Q = 0

U = runif(N)

A = -log(U)/lambda

D = Inf

while (Q <= s) {

t = min(A, D)

if (t == D) {

Q = Q - 1

if (Q > 0) {

V = runif(1)

D = t - log(V)/mu

} else {

D = Inf

}

} else {

Q = Q + 1

U = runif(1)

A[which.min(A)] = t - log(U)/lambda

if (Q == 1) {

V = runif(1)

D = t - log(V)/mu

}

}

}

C[i] = t

}

mean(C)

## [1] 1.536251

Lemma 3.1. Let X ∼ Exp(λ) and Y ∼ Exp(µ) be independent random variables. Then, we infer that:

W = min{X, Y } ∼ Exp(λ + µ).

Proof. For w > 0, we calculate that:

FW (w) = P (min{X, Y } ⩽ w) = 1− P (min{X, Y } > w) = 1− P(X > w, Y > w)

= 1− P(X > w)P(Y > w) = 1− [1− FX(w)] [1− FY (w)] = 1− e−λwe−µw = 1− e−(λ+µ)w.

Corollary 3.1. The time until 1 out of the N functioning machines breaks down follows the Exp(Nλ) distribution.

81



C = numeric(n)

for (i in 1:n) {

Q = 0

U = runif(1)

A = -log(U)/(N * lambda)

D = Inf

while (Q <= s) {

t = min(A, D)

if (t == A) {

Q = Q + 1

U = runif(1)

A = t - log(U)/(N * lambda)

if (Q == 1) {

V = runif(1)

D = t - log(V)/mu

}

} else {

Q = Q - 1

if (Q > 0) {

V = runif(1)

D = t - log(V)/mu

} else {

D = Inf

}

}

}

C[i] = t

}

mean(C)

## [1] 1.531271

Example 3.12. Suppose that messages arrive at a communications facility according to a Poisson process with
rate λ. The facility has c communication channels. If all of the channels are busy at the arrival time of a new
message, then the message is lost. The weather is initially nice and alternates between nice and bad periods lasting
s1 and s2 hours respectively. If the weather is nice at the arrival time of a new message, then the time required
for its decoding follows the Beta(µ1, 1) distribution, otherwise it follows the Beta(µ2, 1) distribution. We want to
estimate the average number of lost messages up to time T ∗.

n = 1000

c = 3

lambda = 2

mu = c(1, 3)

s = c(2, 1)
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Tstar = 100

L = numeric(n)

for (i in 1:n) {

Q = 0

U = runif(1)

A = -log(U)/lambda

D = rep(Inf, c)

t = A

while (t < Tstar) {

if (t == A) {

U = runif(1)

A = t - log(U)/lambda

if (Q < c) {

Q = Q + 1

V = runif(1)

if (t%%sum(s) <= s[1]) {

D[match(Inf, D)] = t + Vˆ(1/mu[1])

} else {

D[match(Inf, D)] = t + Vˆ(1/mu[2])

}

} else {

L[i] = L[i] + 1

}

} else {

Q = Q - 1

D[which.min(D)] = Inf

}

t = min(A, D)

}

}

mean(L)

## [1] 17.229
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4 Variance Reduction Techniques

Antithetic Variables

Let X1, X2, X, Y be identically distributed random variables with expected value µ and variance σ2. Suppose that
the random variables X1, X2 are independent, whereas the random variables X, Y have covariance Cov(X, Y ) = σXY

and Pearson correlation coefficient Corr(X, Y ) = ρXY . Then, we observe that:

E
(

X1 + X2

2

)
= E

(
X + Y

2

)
= µ,

Var
(

X1 + X2

2

)
= Var(X1) + Var(X2)

4 = σ2

2 ,

Var
(

X + Y

2

)
= Var(X) + Var(Y ) + 2Cov(X, Y )

4 = σ2 + σXY

2 ,

Var
(

X + Y

2

)
< Var

(
X1 + X2

2

)
⇔ σXY < 0.

The percentage of variance reduction for an estimator of µ by use of the antithetic variables method is equal to:

100 ·
σ2 −

(
σ2 + σXY

)
σ2 = 100 · |σXY |

σ2 = 100 · |ρXY | .

Proposition 4.1. Let U1, U2, . . . , Uk ∼ Unif[0, 1] be independent random variables. Suppose that h : [0, 1]k → R
is a monotone function of each of its arguments. Then, it holds that:

Cov [h (U1, . . . , Uk) , h (1− U1, . . . , 1− Uk)] ⩽ 0.

Corollary 4.1. Let U, U1, U2 ∼ Unif[0, 1] be independent random variables. Consider a monotone function
h : [0, 1]→ R. Then, it holds that:

E
[

h(U) + h(1− U)
2

]
= E

[
h(U1) + h(U2)

2

]
,

Var
[

h(U) + h(1− U)
2

]
⩽ Var

[
h(U1) + h(U2)

2

]
.

Example 4.1. Let U ∼ Unif[0, 1] be a random variable. We want to estimate the expected value E
(
eU
)
. We

observe that the function h(x) = ex is increasing for x ∈ [0, 1].

n = 1e+05

U = runif(n)

X = exp(U)

I = mean(X)

print(I)

## [1] 1.718251
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VarX = mean((X - I)ˆ2)

print(VarX)

## [1] 0.2427706

U = runif(n/2)

X = exp(U)

Y = exp(1 - U)

W = (X + Y)/2

I = mean(W)

print(I)

## [1] 1.718183

VarW = mean((W - I)ˆ2)

print(VarW)

## [1] 0.003916482

rho = (2 * VarW - VarX)/VarX

print(rho)

## [1] -0.9677351

100 * abs(rho)

## [1] 96.77351

Example 4.2. Let U, V ∼ Unif[0, 1] be independent random variables. We want to estimate the expected value
E
[
e(U+V )2

]
. We observe that h(x, y) = e(x+y)2 is an increasing function of each of its arguments for x, y ∈ [0, 1].

n = 1e+05

U = runif(n)

V = runif(n)

X = exp((U + V)ˆ2)

I = mean(X)

print(I)

## [1] 4.886297

VarX = mean((X - I)ˆ2)

print(VarX)

## [1] 35.24747

U = runif(n/2)

V = runif(n/2)

X = exp((U + V)ˆ2)

Y = exp((2 - U - V)ˆ2)

W = (X + Y)/2
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I = mean(W)

print(I)

## [1] 4.897734

VarW = mean((W - I)ˆ2)

print(VarW)

## [1] 11.51644

rho = (2 * VarW - VarX)/VarX

print(rho)

## [1] -0.3465383

100 * abs(rho)

## [1] 34.65383

Example 4.3. Let U1, U2, · · · ∼ Unif[0, 1] be a sequence of independent random variables. We want to estimate
the expected value of the following random variable:

X = sup {k ∈ N : U1 < U2 < · · · < Uk−1} .

We define the following random variable:

Y = sup {k ∈ N : 1− U1 < 1− U2 < · · · < 1− Uk−1} = sup {k ∈ N : U1 > U2 > · · · > Uk−1} .

n = 1e+06

X = numeric(n)

for (i in 1:n) {

Uold = runif(1)

Unew = runif(1)

X[i] = 2

while (Uold < Unew) {

Uold = Unew

Unew = runif(1)

X[i] = X[i] + 1

}

}

I = mean(X)

print(I)

## [1] 2.717766

VarX = mean((X - I)ˆ2)

print(VarX)

## [1] 0.765044
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X = numeric(n/2)

Y = numeric(n/2)

for (i in 1:(n/2)) {

Uold = runif(1)

Unew = runif(1)

X[i] = 2

Y[i] = 2

if (Uold < Unew) {

while (Uold < Unew) {

Uold = Unew

Unew = runif(1)

X[i] = X[i] + 1

}

} else {

while (Uold > Unew) {

Uold = Unew

Unew = runif(1)

Y[i] = Y[i] + 1

}

}

}

W = (X + Y)/2

I = mean(W)

print(I)

## [1] 2.718524

VarW = mean((W - I)ˆ2)

print(VarW)

## [1] 0.1254453

rho = (2 * VarW - VarX)/VarX

print(rho)

## [1] -0.6720574

100 * abs(rho)

## [1] 67.20574

Note 4.1. Let X ∼ N
(
µ, σ2) be a random variable. Then, the random variable Y = 2µ − X is identically

distributed and negatively correlated with X.

Example 4.4. Let Z ∼ N (0, 1) be a random variable. We want to estimate the random variable E
(
eZ
)
.

n = 1e+05

U = runif(n/2)
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D = -2 * log(U)

V = runif(n/2)

Theta = 2 * pi * V

Z = sqrt(D) * c(cos(Theta), sin(Theta))

X = exp(Z)

I = mean(X)

print(I)

## [1] 1.651902

VarX = mean((X - I)ˆ2)

print(VarX)

## [1] 4.685197

U = runif(n/4)

D = -2 * log(U)

V = runif(n/4)

Theta = 2 * pi * V

Z = sqrt(D) * c(cos(Theta), sin(Theta))

X = exp(Z)

Y = exp(-Z)

W = (X + Y)/2

I = mean(W)

print(I)

## [1] 1.654055

VarW = mean((W - I)ˆ2)

print(VarW)

## [1] 1.504112

rho = (2 * VarW - VarX)/VarX

print(rho)

## [1] -0.3579303

100 * abs(rho)

## [1] 35.79303

Control Variables

Consider 2 random variables X and Y with E(X) = µ, E(Y ) = µY , Var(X) = σ2
X , Var(Y ) = σ2

Y , Cov(X, Y ) = σXY

and Corr(X, Y ) = ρXY . We observe that the random variable Wc = X + c (Y − µY ) also has expected value µ for
every c ∈ R. We calculate that:

Var (Wc) = Var(X) + c2Var (Y − µY ) + 2cCov (X, Y − µY ) = σ2
Y c2 + 2σXY c + σ2

X .
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Since σ2
Y > 0, we know that the function Var (Wc) has a unique global minimum at:

c∗ = −σXY

σ2
Y

.

We observe that:

Var (Wc∗) = σ2
XY

σ2
Y

− 2σ2
XY

σ2
Y

+ σ2
X = σ2

X −
σ2

XY

σ2
Y

= σ2
X

(
1− σ2

XY

σ2
Xσ2

Y

)
= σ2

X

(
1− ρ2

XY

)
⩽ σ2

X .

Therefore, the percentage of variance reduction for an estimator of µ by use of the control variable method is equal
to:

100 ·
σ2

X − σ2
X

(
1− ρ2

XY

)
σ2

X

= 100 · ρ2
XY .

If X and Y are uncorrelated, then Var (Wc∗) = σ2
X , i.e. no variance reduction may be achieved for this specific

choice of control variable Y . It’s usually not possible to directly calculate the quantities σXY and σ2
Y , so they’re

estimated from the simulated sample (X1, Y1), . . . , (Xn, Yn) as follows:

σ̂XY = 1
n− 1

n∑
i=1

(
Xi −X

) (
Yi − Y

)
, σ̂2

Y = 1
n− 1

n∑
i=1

(
Yi − Y

)2
.

Example 4.5. Let U ∼ Unif[0, 1] be a random variable. We want to estimate the expected value E
(√

1− U2
)
.

We will first use Y = U as a control variable with E(Y ) = 0.5.

n = 1e+05

U = runif(n)

X = sqrt(1 - Uˆ2)

I = mean(X)

print(I)

## [1] 0.78518

VarX = mean((X - I)ˆ2)

print(VarX)

## [1] 0.05000468

Y = U

muY = 0.5

VarY = var(Y)

Cov = cov(X, Y)

c = -Cov/VarY

W = X + c * (Y - muY)

I = mean(W)

print(I)

## [1] 0.7850612

VarW = mean((W - I)ˆ2)

print(VarW)
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## [1] 0.007591752

rho = Cov/sqrt(VarX * VarY)

print(rho)

## [1] -0.920971

100 * rhoˆ2

## [1] 84.81877

We will then use Y = U2 as a control variable with:

E(Y ) = Var(U) + [E(U)]2 = 1
12 + 1

4 = 1
3 .

Y = Uˆ2

muY = 1/3

VarY = var(Y)

Cov = cov(X, Y)

c = -Cov/VarY

W = X + c * (Y - muY)

I = mean(W)

print(I)

## [1] 0.7852937

VarW = mean((W - I)ˆ2)

print(VarW)

## [1] 0.001647797

rho = Cov/sqrt(VarX * VarY)

print(rho)

## [1] -0.9833905

100 * rhoˆ2

## [1] 96.70568

Example 4.6. Let S ∼ Gamma(2, 1) be a random variable. We want to estimate the probability P(S2 ⩽ 4). We
will first use Y = S as a control variable with E(Y ) = 2.

n = 1e+05

U = matrix(runif(2 * n), n)

R = -log(U)

S = rowSums(R)

X = Sˆ2 <= 4

I = mean(X)

print(I)
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## [1] 0.59344

VarX = mean((X - I)ˆ2)

print(VarX)

## [1] 0.241269

Y = S

muY = 2

VarY = var(Y)

Cov = cov(X, Y)

c = -Cov/VarY

W = X + c * (Y - muY)

I = mean(W)

print(I)

## [1] 0.5937954

VarW = mean((W - I)ˆ2)

print(VarW)

## [1] 0.09494908

rho = Cov/sqrt(VarX * VarY)

print(rho)

## [1] -0.7787591

100 * rhoˆ2

## [1] 60.64657

We will then use Y = S2 as a control variable with:

E(Y ) = Var(S) + [E(S)]2 = 2 + 4 = 6.

Y = Sˆ2

muY = 6

VarY = var(Y)

Cov = cov(X, Y)

c = -Cov/VarY

W = X + c * (Y - muY)

I = mean(W)

print(I)

## [1] 0.5936546

VarW = mean((W - I)ˆ2)

print(VarW)

## [1] 0.1553603
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rho = Cov/sqrt(VarX * VarY)

print(rho)

## [1] -0.5967191

100 * rhoˆ2

## [1] 35.60737

Conditioning Method

Let X, Y be two random variables with E(X) = µ and Var(X) = σ2. According to the law of iterated expectations,
we know that E(X) = E [E (X | Y )], i.e. the random variable W = E (X | Y ) also has expected value µ. According
to the law of total variance, we know that:

Var(X) = Var [E (X | Y )] + E [Var (X | Y )] ⇒ Var [E (X | Y )] ⩽ σ2.

The percentage of variance reduction for an estimator of µ by use of the conditioning method is equal to:

100 · Var(X)−Var [E (X | Y )]
Var(X) = 100 · E [Var (X | Y )]

σ2 .

Note 4.2. We know that Var (X | Y ) ≡ 0 if and only if X = g(Y ) for some measurable function g. In this case, we
observe that Var [E (X | Y )] = σ2, i.e. no variance reduction may be achieved for this specific choice of conditioning
variable Y .

Example 4.7. Let Y ∼ Exp(1) and (S | Y ) ∼ N (Y, 4) be two random variables. We want to estimate the
probability P(S > 1). For y > 0, we calculate that:

P(S > 1 | Y = y) = P
(

S − y

2 >
1− y

2

∣∣∣∣Y = y

)
= 1− Φ

(
1− y

2

)
.

According to the law of iterated expectations, we infer that:

P(S > 1) = E
(
1{S>1}

)
= E

[
E
(
1{S>1}

∣∣Y )] = E [P (S > 1 | Y )] = E
[
1− Φ

(
1− Y

2

)]
.

n = 1e+05

U = runif(n)

Y = -log(U)

U = runif(n/2)

D = -2 * log(U)

V = runif(n/2)

Theta = 2 * pi * V

Z = sqrt(D) * c(cos(Theta), sin(Theta))

S = 2 * Z + Y

X = S > 1

I = mean(X)
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print(I)

## [1] 0.49067

VarX = mean((X - I)ˆ2)

print(VarX)

## [1] 0.249913

W = 1 - pnorm((1 - Y)/2)

I = mean(W)

print(I)

## [1] 0.4905546

VarW = mean((W - I)ˆ2)

print(VarW)

## [1] 0.02691248

100 * (VarX - VarW)/VarX

## [1] 89.23126

We will then use Y as a control variable with E(Y ) = 1.

muY = 1

VarY = var(Y)

Cov = cov(W, Y)

c = -Cov/VarY

W = W + c * (Y - muY)

I = mean(W)

print(I)

## [1] 0.4900535

VarW = mean((W - I)ˆ2)

print(VarW)

## [1] 0.001347862

100 * (VarX - VarW)/VarX

## [1] 99.46067

Example 4.8. We want to approximate the value of the constant π. Consider two independent random variables
U, V ∼ Unif[0, 1]. Then, we know that:

π = 4P
(
U2 + V 2 ⩽ 1

)
= E

(
4 · 1{U2+V 2⩽1}

)
.
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For u ∈ [0, 1], we calculate that:

P
(

U2 + V 2 ⩽ 1
∣∣U = u

)
= P

(
V ⩽

√
1− u2

∣∣∣U = u
)

= P
(

V ⩽
√

1− u2
)

=
√

1− u2.

According to the law of iterated expectations, we infer that:

π = E
[
E
(

4 · 1{U2+V 2⩽1}
∣∣U)] = E

[
4P
(

U2 + V 2 ⩽ 1
∣∣U)] = E

(
4
√

1− U2
)

.

n = 1e+06

U = runif(n)

V = runif(n)

X = 4 * (Uˆ2 + Vˆ2 <= 1)

I = mean(X)

print(I)

## [1] 3.141728

VarX = mean((X - I)ˆ2)

print(VarX)

## [1] 2.696457

W = 4 * sqrt(1 - Uˆ2)

I = mean(W)

print(I)

## [1] 3.141884

VarW = mean((W - I)ˆ2)

print(VarW)

## [1] 0.7960046

100 * (VarX - VarW)/VarX

## [1] 70.47961

We will then use Y = U as a control variable with E(Y ) = 0.5.

Y = U

muY = 0.5

VarY = var(Y)

Cov = cov(W, Y)

c = -Cov/VarY

W = W + c * (Y - muY)

I = mean(W)

print(I)

## [1] 3.141869
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VarW = mean((W - I)ˆ2)

print(VarW)

## [1] 0.1205411

100 * (VarX - VarW)/VarX

## [1] 95.52965

Example 4.9. Let R ∼ Exp(1) and S ∼ Exp(0.5) be two independent random variables. We want to estimate the
probability P(R + S > 4). For s > 0, we calculate that:

P(R + S > 4 | S = s) = P (R > 4− s | S = s) = P(R > 4− s) =

e−(4−s), s ⩽ 4

1, s > 4
.

According to the law of iterated expectations, we infer that:

P(R + S > 4) = E
(
1{R+S>4}

)
= E

[
E
(
1{R+S>4}

∣∣S)] = E [P (R + S > 4 | S)] = E
[
min

{
e−(4−S), 1

}]
.

n = 1e+05

U = runif(n)

R = -log(U)

V = runif(n)

S = -2 * log(V)

X = R + S > 4

I = mean(X)

print(I)

## [1] 0.253

VarX = mean((X - I)ˆ2)

print(VarX)

## [1] 0.188991

W = pmin(exp(-(4 - S)), 1)

I = mean(W)

print(I)

## [1] 0.2518087

VarW = mean((W - I)ˆ2)

print(VarW)

## [1] 0.11645

100 * (VarX - VarW)/VarX

## [1] 38.38331
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We will then use Y = S as a control variable with E(Y ) = 2.

Y = S

muY = 2

VarY = var(Y)

Cov = cov(W, Y)

c = -Cov/VarY

W = W + c * (Y - muY)

I = mean(W)

print(I)

## [1] 0.2523751

VarW = mean((W - I)ˆ2)

print(VarW)

## [1] 0.02201785

100 * (VarX - VarW)/VarX

## [1] 88.34979

Alternatively, we calculate that P(R + S > 4) = E [P (R + S > 4 | R)] = E
[
min

{
e−(4−R)/2, 1

}]
.

W = pmin(exp(-(4 - R)/2), 1)

I = mean(W)

print(I)

## [1] 0.2530393

VarW = mean((W - I)ˆ2)

print(VarW)

## [1] 0.02831303

100 * (VarX - VarW)/VarX

## [1] 85.01885

We will then use Y = R as a control variable with E(Y ) = 1.

Y = R

muY = 1

VarY = var(Y)

Cov = cov(W, Y)

c = -Cov/VarY

W = W + c * (Y - muY)

I = mean(W)

print(I)

## [1] 0.2525319
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VarW = mean((W - I)ˆ2)

print(VarW)

## [1] 0.002096755

100 * (VarX - VarW)/VarX

## [1] 98.89055

Example 4.10. Let R, S ∼ Bin(k, p) be two independent random variables. We want to estimate the expected
value E

(
eRS

)
. For r ∈ {0, 1, . . . , k}, we calculate that:

E
(

eRS
∣∣R = r

)
= E

(
erS
∣∣R = r

)
= E

(
erS
)

=
k∑

s=0

(
k

s

)
ps(1− p)k−sers

=
k∑

s=0

(
k

s

)
(per)s (1− p)k−s = (per + 1− p)k

.

According to the law of iterated expectations, we infer that:

E
(
eRS

)
= E

[
E
(

eRS
∣∣R)] = E

[(
peR + 1− p

)k
]

.

n = 1e+05

k = 2

p = 0.1

U = matrix(runif(n * k), n)

R = rowSums(U < p)

V = matrix(runif(n * k), n)

S = rowSums(V < p)

X = exp(R * S)

I = mean(X)

print(I)

## [1] 1.081712

VarX = mean((X - I)ˆ2)

print(VarX)

## [1] 0.5129571

W = (p * exp(R) + 1 - p)ˆk

I = mean(W)

print(I)

## [1] 1.084086

VarW = mean((W - I)ˆ2)

print(VarW)

## [1] 0.04611129
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100 * (VarX - VarW)/VarX

## [1] 91.01069

We will then use Y = R as a control variable with E(Y ) = kp.

Y = R

muY = k * p

VarY = var(Y)

Cov = cov(W, Y)

c = -Cov/VarY

W = W + c * (Y - muY)

I = mean(W)

print(I)

## [1] 1.083844

VarW = mean((W - I)ˆ2)

print(VarW)

## [1] 0.007070317

100 * (VarX - VarW)/VarX

## [1] 98.62166

Lemma 4.1. Let S ∼ Gamma(k, λ) be a random variable with k ∈ N. For s > 0, we know that:

FS(s) = 1−
k−1∑
j=0

e−λs (λs)j

j! .

Proof. Let {N(t) : t ⩾ 0} be a Poisson process with rate λ and arrival times S1, S2, . . .. Then, we know that
Sk ∼ Gamma(k, λ). We observe that:

FSk
(s) = P (Sk ⩽ s) = P [N(s) ⩾ k] = 1− P [N(s) ⩽ k − 1] = 1−

k−1∑
j=0

P [N(s) = j] = 1−
k−1∑
j=0

e−λs (λs)j

j! .

Example 4.11. Let K ∼ Poisson(λ) be a random variable. Consider a sequence of independent random variables
R1, R2, · · · ∼ Exp(µ) which is independent of K. We want to estimate the probability P (SK > s), where:

SK =
K∑

ℓ=1
Rℓ.

For k ∈ N, we observe that Sk ∼ Gamma(k, µ). Therefore, we calculate that:

P (SK > s | K = k) = P (Sk > s | K = k) = P (Sk > s) =
k−1∑
j=0

e−µs (µs)j

j! .
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According to the law of iterated expectations, we infer that:

P (SK > s) = E
(
1{SK >s}

)
= E

[
E
(
1{SK >s}

∣∣K)] = E [P (SK > s | K)] = E

K−1∑
j=0

e−µs (µs)j

j!

 .

n = 1e+05

lambda = 4

mu = 6

s = 1

K = numeric(n)

S = numeric(n)

for (i in 1:n) {

U = runif(1)

pmf = exp(-lambda)

cdf = pmf

while (U > cdf) {

K[i] = K[i] + 1

pmf = pmf * lambda/K[i]

cdf = cdf + pmf

}

V = runif(K[i])

R = -log(V)/mu

S[i] = sum(R)

}

X = S > s

I = mean(X)

print(I)

## [1] 0.21204

VarX = mean((X - I)ˆ2)

print(VarX)

## [1] 0.167079

W = numeric(n)

for (i in 1:n) {

if (K[i] > 0) {

pmf = exp(-mu * s)

for (j in 0:(K[i] - 1)) {

W[i] = W[i] + pmf

pmf = pmf * mu * s/(j + 1)

}

}

}

99



I = mean(W)

print(I)

## [1] 0.2116497

VarW = mean((W - I)ˆ2)

print(VarW)

## [1] 0.04840946

100 * (VarX - VarW)/VarX

## [1] 71.02601

We will then use Y = K as a control variable with E(Y ) = λ.

Y = K

muY = lambda

VarY = var(Y)

Cov = cov(W, Y)

c = -Cov/VarY

W = W + c * (Y - muY)

I = mean(W)

print(I)

## [1] 0.2125292

VarW = mean((W - I)ˆ2)

print(VarW)

## [1] 0.003967733

100 * (VarX - VarW)/VarX

## [1] 97.62524

Alternatively, we define M = min {m ∈ N : Sm > s}. For m ∈ N, we calculate that:

P (SK > s |M = m) = P (K ⩾ M |M = m) = P (K ⩾ m |M = m)

= 1− P(K ⩽ m− 1) = 1−
m−1∑
j=0

e−λ λj

j! .

According to the law of iterated expectations, we infer that:

P (SK > s) = E
(
1{SK >s}

)
= E

[
E
(
1{SK >s}

∣∣M)]
= E [P (SK > s |M)] = E

1−
M−1∑
j=0

e−λ λj

j!

 .

n = 1e+05

lambda = 4

mu = 6

100



s = 1

S = numeric(n)

M = numeric(n)

W = numeric(n)

for (i in 1:n) {

while (S[i] <= s) {

U = runif(1)

R = -log(U)/mu

S[i] = S[i] + R

M[i] = M[i] + 1

}

W[i] = 1

pmf = exp(-lambda)

for (j in 0:(M[i] - 1)) {

W[i] = W[i] - pmf

pmf = pmf * lambda/(j + 1)

}

}

I = mean(W)

print(I)

## [1] 0.2129754

VarW = mean((W - I)ˆ2)

print(VarW)

## [1] 0.05250765

100 * (VarX - VarW)/VarX

## [1] 68.57317

We will then use Y = SM −M/µ as a control variable. For m ∈ N, we calculate that:

E (Y |M = m) = E
(

Sm −
m

µ

∣∣∣∣M = m

)
= E (Sm)− m

µ
= 0.

According to the law of iterated expectations, we infer that E(Y ) = E [E (Y |M)] = 0.

Y = S - M/mu

muY = 0

VarY = var(Y)

Cov = cov(W, Y)

c = -Cov/VarY

W = W + c * (Y - muY)

I = mean(W)

print(I)
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## [1] 0.2126705

VarW = mean((W - I)ˆ2)

print(VarW)

## [1] 0.01807493

100 * (VarX - VarW)/VarX

## [1] 89.18181

Example 4.12. Consider a M/M/1/k queuing system, where the arrival process {N(t) : t ⩾ 0} is Poisson with
rate λ and the service times follow the Exp(µ) distribution. We want to estimate the average number X of lost
customers up to time T ∗. We let S be the total time that the system is full up to time point T ∗. Then, we observe
that X

d= N(S). According to the law of iterated expectations, we infer that:

E(X) = E [N(S)] = E [E (N(S) | S)] = E (λS) .

n = 1000

lambda = 4

mu = 6

k = 10

Tstar = 100

X = numeric(n)

S = numeric(n)

for (i in 1:n) {

Q = 0

U = runif(1)

A = -log(U)/lambda

t = A

while (t < Tstar) {

if (t == A) {

if (Q < k) {

Q = Q + 1

if (Q == k) {

S[i] = S[i] - t

}

} else {

X[i] = X[i] + 1

}

U = runif(1)

A = t - log(U)/lambda

if (Q == 1) {

V = runif(1)

D = t - log(V)/mu

}
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} else {

Q = Q - 1

if (Q > 0) {

V = runif(1)

D = t - log(V)/mu

} else {

D = Inf

}

if (Q == k - 1) {

S[i] = S[i] + t

}

}

t = min(A, D)

}

if (Q == k) {

S[i] = S[i] + Tstar

}

}

I = mean(X)

print(I)

## [1] 2.221

VarX = mean((X - I)ˆ2)

print(VarX)

## [1] 9.140159

W = lambda * S

I = mean(W)

print(I)

## [1] 2.231415

VarW = mean((W - I)ˆ2)

print(VarW)

## [1] 7.261257

100 * (VarX - VarW)/VarX

## [1] 20.55656

Example 4.13. Consider a M/M/1 queuing system, where the arrival process is Poisson with rate λ and the
service times follow the Exp(µ) distribution. We want to estimate the expected total sojourn time of the first
N∗ customers in the system. Let Sj be the sojourn time of the j-th customer, Rj be the service time of the j-th
customer and Mj be the number of customers present in the system at the arrival moment of the j-th customer.
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Then, we define:

X =
N∗∑
j=1

Sj , Y =
N∗∑
j=1

Rj , K =
N∗∑
j=1

Mj .

We will first use Y as a control variable with E(Y ) = N∗/µ.

n = 10000

lambda = 4

mu = 6

Nstar = 10

X = numeric(n)

Y = numeric(n)

K = numeric(n)

for (i in 1:n) {

Q = 0

U = runif(1)

A = -log(U)/lambda

D = Inf

N = 0

arrivals = numeric(0)

while (N < Nstar || Q > 0) {

t = min(A, D)

if (t == A) {

K[i] = K[i] + Q

Q = Q + 1

N = N + 1

if (N < Nstar) {

U = runif(1)

A = t - log(U)/lambda

} else {

A = Inf

}

if (Q == 1) {

V = runif(1)

D = t - log(V)/mu

Y[i] = Y[i] + D - t

}

arrivals = c(arrivals, t)

} else {

Q = Q - 1

if (Q > 0) {

V = runif(1)

D = t - log(V)/mu

Y[i] = Y[i] + D - t
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} else {

D = Inf

}

X[i] = X[i] + t - arrivals[1]

arrivals = arrivals[-1]

}

}

}

I = mean(X)

print(I)

## [1] 3.204967

VarX = mean((X - I)ˆ2)

print(VarX)

## [1] 4.15866

muY = Nstar/mu

VarY = var(Y)

Cov = cov(X, Y)

c = -Cov/VarY

W = X + c * (Y - muY)

I = mean(W)

print(I)

## [1] 3.212926

VarW = mean((W - I)ˆ2)

print(VarW)

## [1] 1.587515

rho = Cov/sqrt(VarX * VarY)

print(rho)

## [1] 0.7863362

100 * rhoˆ2

## [1] 61.83246

According to the law of iterated expectations, we alternatively calculate that:

E(X) =
N∗∑
j=1

E (Sj) =
N∗∑
j=1

E [E (Sj |Mj)] =
N∗∑
j=1

E
(

Mj + 1
µ

)
= E

 1
µ

N∗∑
j=1

Mj + N∗

µ

 = E
(

K + N∗

µ

)
.

W = (K + Nstar)/mu

I = mean(W)
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print(I)

## [1] 3.2149

VarW = mean((W - I)ˆ2)

print(VarW)

## [1] 1.452951

100 * (VarX - VarW)/VarX

## [1] 65.06203

Importance Sampling

Let R, Y be random variables with PDFs f(x), g(x) and supports Sf , Sg respectively. Consider a function
h : Sf → R. Suppose it holds that either Sg ⊆ Sf and h(x) = 0 for x ∈ Sf ∖ Sg or Sf ⊆ Sg. We want to estimate
the expected value E [h(R)]. If we let ϕ(x) = h(x)f(x)

g(x) , then we observe that:

E [h(R)] =
∫

Sf

h(x)f(x)dx =
∫

Sg

h(x)f(x)
g(x) g(x)dx =

∫
Sg

ϕ(x)g(x)dx = E [ϕ(Y )] .

The aim of the importance sampling method is to select a random variable Y such that f(x)≫ g(x) if and only
if |h(x)| ≈ 0 and f(x)≪ g(x) if and only if |h(x)| ≫ 0. In this way, we manage to minimize the variance of the
random variable ϕ(Y ).

Example 4.14. Let Z ∼ N (0, 1) be a random variable. We want to estimate the probability P(Z > 3). We will
use g(x) = e−(x−3) as an importance variable for x > 3. Then, we calculate that:

ϕ(x) = h(x)f(x)
g(x) = 1

e−(x−3)
1√
2π

e−x2/2 = e−x2/2+x−3
√

2π
.

n = 1e+05

U = runif(n/2)

D = -2 * log(U)

V = runif(n/2)

Theta = 2 * pi * V

Z = sqrt(D) * c(cos(Theta), sin(Theta))

X = Z > 3

I = mean(X)

print(I)

## [1] 0.0014

VarX = mean((X - I)ˆ2)

print(VarX)

## [1] 0.00139804
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U = runif(n)

Y = 3 - log(U)

W = exp(-Yˆ2/2 + Y - 3)/sqrt(2 * pi)

I = mean(W)

print(I)

## [1] 0.001350963

VarW = mean((W - I)ˆ2)

print(VarW)

## [1] 1.850184e-06

100 * (VarX - VarW)/VarX

## [1] 99.86766

Example 4.15. Let S ∼ Gamma(3, 1) be a random variable. We want to estimate the expected value
E (max{X − 8, 0}). We will use g(x) = e−(x−8) as an importance variable for x > 8. Then, we calculate
that:

ϕ(x) = h(x)f(x)
g(x) = x− 8

e−(x−8)
1

Γ(3)x2e−x = x2(x− 8)
2e8 .

n = 1e+05

U = matrix(runif(3 * n), n)

R = -log(U)

S = rowSums(R)

X = pmax(S - 8, 0)

I = mean(X)

print(I)

## [1] 0.01686379

VarX = mean((X - I)ˆ2)

print(VarX)

## [1] 0.04255399

V = runif(n)

Y = 8 - log(V)

W = Yˆ2 * (Y - 8)/(2 * exp(8))

I = mean(W)

print(I)

## [1] 0.01721288

VarW = mean((W - I)ˆ2)

print(VarW)

## [1] 0.0006926254
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100 * (VarX - VarW)/VarX

## [1] 98.37236

Example 4.16. Let U ∼ Unif[0, 1] be a random variable. We want to estimate the expected value E
[(

1− U2) eU
]
.

We will first use Y ∼ Beta(2, 1) as an importance variable. For x ∈ [0, 1], we calculate that:

ϕ(x) = h(x)f(x)
g(x) =

(
1− x2) ex

2x
.

n = 1e+05

U = runif(n)

X = (1 - Uˆ2) * exp(U)

I = mean(X)

print(I)

## [1] 0.9993458

VarX = mean((X - I)ˆ2)

print(VarX)

## [1] 0.09743515

V = runif(n)

Y = Vˆ(1/2)

W = (1 - Yˆ2) * exp(Y)/(2 * Y)

I = mean(W)

print(I)

## [1] 1.007208

VarW = mean((W - I)ˆ2)

print(VarW)

## [1] 3.706268

100 * (VarW - VarX)/VarX

## [1] 3703.831

We observe that the variance of the estimator of E
[(

1− U2) eU
]

is hugely increased for this specific choice of
importance variable. For x ∈ [0, 1], we calculate that h′(x) =

(
1− 2x− x2) ex and h′′(x) = −

(
x2 + 4x + 1

)
ex < 0.

In other words, the function h is maximized at x∗ =
√

2− 1. We know that the PDF of the Beta(a, b) distribution
for a, b > 1 is maximized at:

x∗ = a− 1
a + b− 2 .

If we select a =
√

2 and b = 3−
√

2, then the functions h(x) and g(x) are maximized at the same point. We will
then use Y ∼ Beta

(√
2, 3−

√
2
)

as an importance variable. For x ∈ [0, 1], we calculate that:

ϕ(x) = h(x)f(x)
g(x) =

(
1− x2) ex Γ

(√
2
)

Γ
(
3−
√

2
)

2x
√

2−1(1− x)2−
√

2
.
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M = dbeta(sqrt(2) - 1, sqrt(2), 3 - sqrt(2))

Y = numeric(n)

for (i in 1:n) {

Y[i] = runif(1)

U = runif(1)

V = M * U

while (dbeta(Y[i], sqrt(2), 3 - sqrt(2)) < V) {

Y[i] = runif(1)

U = runif(1)

V = M * U

}

}

W = (1 - Yˆ2) * exp(Y)/dbeta(Y, sqrt(2), 3 - sqrt(2))

I = mean(W)

print(I)

## [1] 1.000158

VarW = mean((W - I)ˆ2)

print(VarW)

## [1] 0.05403956

100 * (VarX - VarW)/VarX

## [1] 44.53792

curve(dbeta(x, 2, 1), col = "red", lwd = 2, xlab = NA, ylab = NA, xlim = c(0,

1))

curve(dbeta(x, sqrt(2), 3 - sqrt(2)), add = TRUE, col = "blue", lwd = 2)

curve((1 - xˆ2) * exp(x), add = TRUE, col = "purple", lwd = 2)

legend("topleft", c(expression("Beta" ~ (2 ~ "," ~ 1)), expression("Beta" ~

(sqrt(2) ~ "," ~ 3 - sqrt(2))), expression((1 - xˆ2) %.% eˆx)), col = c("red",

"blue", "purple"), lty = c(1, 1, 1), lwd = c(2, 2, 2), cex = 0.75)
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Note 4.3. Let X ∼ tν be a random variable. For x ∈ R, we know that:

fX(x) =
Γ
(

ν+1
2
)

√
νπΓ

(
ν
2
) (1 + x2

ν

)− ν+1
2

.

For k ∈ N, we know that:

Γ
(

k + 1
2

)
= (2k)!

4kk!
√

π.

For ν = 1, we know that X ∼ t1 ≡ Cauchy(0, 1). Then, we infer that:

fX(x) = 1
π (1 + x2) , FX(x) = 1

π
arctan x + 1

2 , F −1
X (u) = tan

[
π

(
u− 1

2

)]
.

Example 4.17. Let S ∼ t3 be a random variable. We want to estimate the expected value E (|S|). We will first
use Y ∼ Cauchy(0, 1) as an importance variable. For x ∈ R, we calculate that:

ϕ(x) = h(x)f(x)
g(x) = |x|π

(
1 + x2) 1√

3π
√

π/2

(
1 + x2

3

)−2

=
2|x|

(
1 + x2)
√

3

(
1 + x2

3

)−2

.

n = 1e+05

M = (3/2)ˆ(3/2) * 2/sqrt(pi) * exp(-0.5)

Y = numeric(n)

for (i in 1:n) {

W = runif(1)

Y[i] = -3 * log(W)

U = runif(1)

V = M * dexp(Y[i], 1/3) * U

while (dchisq(Y[i], 3) < V) {

W = runif(1)

Y[i] = -3 * log(W)

U = runif(1)

V = M * dexp(Y[i], 1/3) * U

}

110



}

U = runif(n/2)

D = -2 * log(U)

V = runif(n/2)

Theta = 2 * pi * V

Z = sqrt(D) * c(cos(Theta), sin(Theta))

S = sqrt(3/Y) * Z

X = abs(S)

I = mean(X)

print(I)

## [1] 1.099443

VarX = mean((X - I)ˆ2)

print(VarX)

## [1] 1.727892

U = runif(n)

Y = tan(pi * (U - 0.5))

W = 2 * abs(Y) * (1 + Yˆ2)/sqrt(3) * (1 + Yˆ2/3)ˆ(-2)

I = mean(W)

print(I)

## [1] 1.102958

VarW = mean((W - I)ˆ2)

print(VarW)

## [1] 0.5165322

100 * (VarX - VarW)/VarX

## [1] 70.10622

We will then use Y ∼ N (0, 1) as an importance variable. For x ∈ R, we calculate that:

ϕ(x) = h(x)f(x)
g(x) = |x|

√
2πex2/2 1√

3π
√

π/2

(
1 + x2

3

)−2

= 4|x|ex2/2
√

6π

(
1 + x2

3

)−2

.

U = runif(n/2)

D = -2 * log(U)

V = runif(n/2)

Theta = 2 * pi * V

Y = sqrt(D) * c(cos(Theta), sin(Theta))

W = 4 * abs(Y) * exp(Yˆ2/2)/sqrt(6 * pi) * (1 + Yˆ2/3)ˆ(-2)

I = mean(W)

print(I)
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## [1] 1.010371

VarW = mean((W - I)ˆ2)

print(VarW)

## [1] 304.6457

100 * (VarW - VarX)/VarX

## [1] 17531.06

We observe that the variance of the estimator of E (|S|) is hugely increased for this specific choice of importance
variable. As far as the function h(x) = |x| is concerned, we observe that h(x) ≈ 0 for x ≈ 0 and h(x) ≫ 0
for |x| ≫ 0. If Y ∼ Cauchy(0, 1), then f(x) ≫ g(x) for x ≈ 0 and f(x) ≪ g(x) for |x| ≫ 0, i.e. this choice of
importance variable is suitable. If Y ∼ N (0, 1), then f(x)≪ g(x) for x ≈ 0 and f(x)≫ g(x) for |x| ≫ 0, i.e. the
importance sampling method leads to an estimator with much higher variance than the original.

curve(dnorm(x), col = "red", lwd = 2, xlab = NA, ylab = NA, xlim = c(-5, 5))

curve(dt(x, 3), add = TRUE, col = "blue", lwd = 2)

curve(dcauchy(x), add = TRUE, col = "purple", lwd = 2)

legend("topright", c(expression(Normal(0, 1)), expression(t[3]), expression(Cauchy(0,

1))), col = c("red", "blue", "purple"), lty = c(1, 1, 1), lwd = c(2, 2,

2), cex = 0.75)
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Example 4.18. Let S ∼ Exp(2) and R ∼ Exp(1) be independent random variables. We want to estimate the
expected value E (max{S + R− 7, 0}). We will use g(x, y) = 2e−2xe−(y−max{7−x,0}) as an importance density for
x > 0 and y > max{7− x, 0}. Then, we calculate that:

ϕ(x, y) = h(x, y)f(x, y)
g(x, y) = (x + y − 7) 2e−2xe−y

2e−2xe−(y−max{7−x,0}) = x + y − 7
emax{7−x,0} .

n = 1e+05

U = runif(n)

S = -log(U)/2

V = runif(n)
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R = -log(V)

X = pmax(S + R - 7, 0)

I = mean(X)

print(I)

## [1] 0.001809774

VarX = mean((X - I)ˆ2)

print(VarX)

## [1] 0.003704638

U = runif(n)

S = -log(U)/2

V = runif(n)

Y = pmax(7 - S, 0) - log(V)

W = (S + Y - 7)/exp(pmax(7 - S, 0))

I = mean(W)

print(I)

## [1] 0.001837356

VarW = mean((W - I)ˆ2)

print(VarW)

## [1] 2.769405e-05

100 * (VarX - VarW)/VarX

## [1] 99.25245

Example 4.19. Let R1, R2, · · · ∼ N
(
µ, σ2) be a sequence of independent random variables with µ < 0 and

A, B > 0. We define the random variables:

Sm =
m∑

j=1
Rj , M = min {m ∈ N : Sm < −A or Sm > B} .

We want to estimate the probability P (SM > B). We will use Y1, Y2, · · · ∼ N
(
−µ, σ2) as importance variables.

Then, we infer that:

ϕ(x) = h(x)f(x)
g(x) = 1{SM >B}

M∏
j=1

fRj
(xj)

fYj
(xj) = 1{SM >B}

M∏
j=1

exp
{
− 1

2σ2 (xj − µ)2
}

exp
{

1
2σ2 (xj + µ)2

}

= 1{SM >B} exp


M∑

j=1
2µxj

 = 1{SM >B} exp
{

2µSM

σ2

}
.

n = 10000

mu = -3

sigma = 2
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A = 6

B = 3

lambda = 1/sigma

M = sqrt(2 * exp(1)/pi)

S = numeric(n)

for (i in 1:n) {

while (S[i] >= -A && S[i] <= B) {

W = runif(1)

Y = ifelse(W <= 0.5, mu + log(2 * W)/lambda, mu - log(2 * (1 - W))/lambda)

U = runif(1)

V = M * dexp(abs(Y - mu), lambda)/2 * U

while (dnorm(Y, mu, sigma) < V) {

W = runif(1)

Y = ifelse(W <= 0.5, mu + log(2 * W)/lambda, mu - log(2 * (1 - W))/lambda)

U = runif(1)

V = M * dexp(abs(Y - mu), lambda)/2 * U

}

S[i] = S[i] + Y

}

}

X = S > B

I = mean(X)

print(I)

## [1] 0.0022

VarX = mean((X - I)ˆ2)

print(VarX)

## [1] 0.00219516

S = numeric(n)

for (i in 1:n) {

while (S[i] >= -A && S[i] <= B) {

W = runif(1)

Y = ifelse(W <= 0.5, -mu + log(2 * W)/lambda, -mu - log(2 * (1 - W))/lambda)

U = runif(1)

V = M * dexp(abs(Y + mu), lambda)/2 * U

while (dnorm(Y, -mu, sigma) < V) {

W = runif(1)

Y = ifelse(W <= 0.5, -mu + log(2 * W)/lambda, -mu - log(2 * (1 -

W))/lambda)

U = runif(1)

V = M * dexp(abs(Y + mu), lambda)/2 * U

}
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S[i] = S[i] + Y

}

}

W = (S > B) * exp(2 * mu * S/sigmaˆ2)

I = mean(W)

print(I)

## [1] 0.002104925

VarW = mean((W - I)ˆ2)

print(VarW)

## [1] 7.516815e-06

100 * (VarX - VarW)/VarX

## [1] 99.65757

Definition 4.1. Let X be a random variable with support S, PDF f and MGF M(t) = E
[
etX
]

for t ∈ R. For
x ∈ S, we define the tilted PDF of f as follows:

ft(x) = etxf(x)
M(t) .

Note 4.4. Let X ∼ f and Y ∼ ft be independent random variables. If t > 0, then E(Y ) > E(X). Otherwise,
E(Y ) < E(X).

Example 4.20. Let R1, . . . , Rk ∼ Exp(1) be independent random variables. We define the random variable
S = R1 + · · · + Rk. We want to estimate the probability P(S > a) with a > k. For t < 1, we know that
Mj(t) = E

(
etRj

)
= 1

1−t . For x > 0, we define the following tilted importance densities:

f
(j)
t (x) =

etxfRj (x)
Mj(t) = (1− t)etxe−x = (1− t)e−(1−t)x.

In other words, we are led to the tilted importance variables Y1, . . . , Yk ∼ Exp(1− t). Then, we infer that:

ϕ(x) = h(x)f(x)
g(x) = 1{S>a}

k∏
j=1

fRj (xj)
f

(j)
t (xj)

= 1{S>a}

k∏
j=1

e−xj

(1− t)e−(1−t)xj

=
1{S>a}

(1− t)k
exp

−
k∑

j=1
txj

 =
1{S>a}e−tS

(1− t)k
.

A suitable value for the parameter t is given by letting Et(S) = a. Then, we conclude that:

k∑
j=1

1
1− t

= a ⇒ t = 1− k

a
.

n = 1e+05

k = 4
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a = 10

U = matrix(runif(k * n), n)

R = -log(U)

S = rowSums(R)

X = S > a

I = mean(X)

print(I)

## [1] 0.00991

VarX = mean((X - I)ˆ2)

print(VarX)

## [1] 0.009811792

t = 1 - k/a

print(t)

## [1] 0.6

V = matrix(runif(k * n), n)

Y = -log(V)/(1 - t)

S = rowSums(Y)

W = (S > a) * exp(-t * S)/(1 - t)ˆk

I = mean(W)

print(I)

## [1] 0.0103581

VarW = mean((W - I)ˆ2)

print(VarW)

## [1] 0.0004474145

100 * (VarX - VarW)/VarX

## [1] 95.44003

Example 4.21. Let R1, . . . , Rk ∼ Bernoulli(p) be independent random variables. we define the random variables
S = R1 + · · · + Rk. We want to estimate the probability P(S ⩾ a) with a < k. For t ∈ R, we know that
Mj(t) = E

(
etRj

)
= 1− p + pet. For x ∈ {0, 1}, we define the following tilted importance densities:

f
(j)
t (x) =

etxfRj (x)
Mj(t) = etxpx(1− p)1−x

1− p + pet
=
(

pet

1− p + pet

)x( 1− p

1− p + pet

)1−x

.

In other words, we are led to the tilted importance variables Y1, . . . , Yk ∼ Bernoulli
(

pet

1−p+pet

)
. Then, we infer

116



that:

ϕ(x) = h(x)f(x)
g(x) = 1{S⩾a}

k∏
j=1

fRj (xj)
f

(j)
t (xj)

= 1{S⩾a}

k∏
j=1

pxj (1− p)1−xj
1− p + pet

etxj pxj (1− p)1−xj

= 1{S⩾a}
(
1− p + pet

)k exp

−
k∑

j=1
txj

 = 1{S⩾a}
(
1− p + pet

)k
e−tS

.

A suitable value for the parameter t is given by letting Et(S) = a. Then, we conclude that:

k∑
j=1

pet

1− p + pet
= a ⇒ t = log a(1− p)

p(k − a) .

n = 1e+05

p = 0.4

k = 20

a = 16

U = matrix(runif(k * n), n)

S = rowSums(U < p)

X = S >= a

I = mean(X)

print(I)

## [1] 0.00032

VarX = mean((X - I)ˆ2)

print(VarX)

## [1] 0.0003198976

t = log(a * (1 - p)/(p * (k - a)))

print(t)

## [1] 1.791759

V = matrix(runif(k * n), n)

S = rowSums(V < p * exp(t)/(1 - p + p * exp(t)))

W = (S >= a) * (1 - p + p * exp(t))ˆk * exp(-t * S)

I = mean(W)

print(I)

## [1] 0.0003173146

VarW = mean((W - I)ˆ2)

print(VarW)

## [1] 2.419507e-07

100 * (VarX - VarW)/VarX

## [1] 99.92437
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Example 4.22. Consider a M/M/1 queuing system, where the arrival process is Poisson with rate λ, inter-arrival
times P1, P2, . . . and the services times R1, R2, . . . follow the Exp(µ) distribution with µ > λ. We let Wj be the
waiting time of the j-th customer in the queue. Additionally, we define:

SW =
N∗∑
j=1

Wj , SP =
N∗∑
j=1

Pj , SR =
N∗∑
j=1

Rj .

We want to estimate the probability P (SW > a). We will use the importance variables P̃1, . . . , P̃N∗ ∼ Exp(µ) and
R̃1, . . . , R̃N∗ ∼ Exp(λ). Then, we infer that:

ϕ(x) = h(x)f(x)
g(x) = 1{SW >a}

N∗∏
j=1

fPj
(xj)fRj

(yj)
f

P̃j
(xj)f

R̃j
(yj) = 1{SW >a}

N∗∏
j=1

λe−λxj µe−µyj

µe−µxj λe−λyj

= 1{SW >a} exp

(µ− λ)
N∗∑
j=1

xj + (λ− µ)
N∗∑
j=1

yj

 = 1{SW >a}e(µ−λ)(SP −SR).

n = 10000

lambda = 4

mu = 6

Nstar = 5

a = 4

SW = numeric(n)

for (i in 1:n) {

Q = 0

U = runif(1)

A = -log(U)/lambda

D = Inf

N = 0

arrivals = numeric(0)

while (N < Nstar || Q > 0) {

t = min(A, D)

if (t == A) {

Q = Q + 1

N = N + 1

if (N < Nstar) {

U = runif(1)

A = t - log(U)/lambda

} else {

A = Inf

}

if (Q == 1) {

V = runif(1)

D = t - log(V)/mu

}
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arrivals = c(arrivals, t)

} else {

Q = Q - 1

arrivals = arrivals[-1]

if (Q > 0) {

V = runif(1)

D = t - log(V)/mu

SW[i] = SW[i] + t - arrivals[1]

} else {

D = Inf

}

}

}

}

X = SW > a

I = mean(X)

print(I)

## [1] 0.0019

VarX = mean((X - I)ˆ2)

print(VarX)

## [1] 0.00189639

SW = numeric(n)

SP = numeric(n)

SR = numeric(n)

for (i in 1:n) {

Q = 0

U = runif(1)

A = -log(U)/mu

SP[i] = SP[i] - log(U)/mu

D = Inf

N = 0

arrivals = numeric(0)

while (N < Nstar || Q > 0) {

t = min(A, D)

if (t == A) {

Q = Q + 1

N = N + 1

if (N < Nstar) {

U = runif(1)

A = t - log(U)/mu

SP[i] = SP[i] - log(U)/mu

119



} else {

A = Inf

}

if (Q == 1) {

V = runif(1)

D = t - log(V)/lambda

SR[i] = SR[i] - log(V)/lambda

}

arrivals = c(arrivals, t)

} else {

Q = Q - 1

arrivals = arrivals[-1]

if (Q > 0) {

V = runif(1)

D = t - log(V)/lambda

SR[i] = SR[i] - log(V)/lambda

SW[i] = SW[i] + t - arrivals[1]

} else {

D = Inf

}

}

}

}

W = (SW > a) * exp((mu - lambda) * (SP - SR))

I = mean(W)

print(I)

## [1] 0.002036983

VarW = mean((W - I)ˆ2)

print(VarW)

## [1] 0.0001958506

100 * (VarX - VarW)/VarX

## [1] 89.67245
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5 Markov Chain Monte Carlo Methods

Gibbs Sampler

We want to generate a sample X(1), X(2), . . . , X(n) following the joint PDF fX1,X2,...,Xk
. Suppose that either

the marginal PDFs fXj are intractable or it’s difficult to simulate from them, but it’s easy to simulate from the
conditional PDFs fXj |X−j

≡ fXj |X1,...,Xj−1,Xj+1,...,Xk
.

Algorithm 5.1 Gibbs Sampler
Input: Conditional CDFs, burn-in size b and sample size n.

1: We consider the initial values X
(1)
1 , X

(1)
2 , . . . , X

(1)
k .

2: For i = 2, 3, . . . , b + n, we iterate the following step:

i: For j = 1, 2, . . . , k, we generate X
(i)
j according to the conditional CDF:

FXj |X1,...,Xj−1,Xj+1,...,Xk

(
x
∣∣∣X(i)

1 , . . . , X
(i)
j−1, X

(i−1)
j+1 , . . . , X

(i−1)
k

)
.

Output: Random sample X(b+1), X(b+2), . . . , X(b+n) following the joint CDF.

The sequence of random variables
{

X(i)} constitutes a discrete-time Markov process with the following transition
kernel:

K
(

x(i)
∣∣∣x(i−1)

)
=

k∏
j=1

fXj |X−j

(
x

(i)
j

∣∣∣x(i)
1 , . . . , x

(i)
j−1, x

(i−1)
j+1 , . . . , x

(i−1)
k

)
.

Theorem 5.1. If the Markov process
{

X(i)} with transition kernel K
(

x(i)
∣∣x(i−1)) and state-space S is irreducible,

then fX1,X2,...,Xk
is its unique stationary distribution.

Proof. We define the reverse transition kernel:

L
(

x(i−1)
∣∣∣x(i)

)
=

k∏
j=1

fXj |X−j

(
x

(i−1)
j

∣∣∣x(i)
1 , . . . , x

(i)
j−1, x

(i−1)
j+1 , . . . , x

(i−1)
k

)
.

Then, we observe that:

fX1,...,Xk

(
x(i−1)

)
K
(

x(i)
∣∣∣x(i−1)

)
= fX1,...,Xk

(
x(i−1)

) k∏
j=1

fXj |X−j

(
x

(i)
j

∣∣∣x(i)
1 , . . . , x

(i)
j−1, x

(i−1)
j+1 , . . . , x

(i−1)
k

)

= fX1,...,Xk

(
x(i−1)

) k∏
j=1

fX1,...,Xk

(
x

(i)
1 , . . . , x

(i)
j , x

(i−1)
j+1 , . . . , x

(i−1)
k

)
fX−j

(
x

(i)
1 , . . . , x

(i)
j−1, x

(i−1)
j+1 , . . . , x

(i−1)
k

)
= fX1,...,Xk

(
x(i)
) k∏

j=1

fX1,...,Xk

(
x

(i)
1 , . . . , x

(i)
j−1, x

(i−1)
j , . . . , x

(i−1)
k

)
fX−j

(
x

(i)
1 , . . . , x

(i)
j−1, x

(i−1)
j+1 , . . . , x

(i−1)
k

)
= fX1,...,Xk

(
x(i)
) k∏

j=1
fXj |X−j

(
x

(i−1)
j

∣∣∣x(i)
1 , . . . , x

(i)
j−1, x

(i−1)
j+1 , . . . , x

(i−1)
k

)
= fX1,...,Xk

(
x(i)
)

L
(

x(i−1)
∣∣∣x(i)

)
.
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Therefore, we infer that:∫
S

fX1,...,Xk

(
x(i−1)

)
K
(

x(i)
∣∣∣x(i−1)

)
dx(i−1) =

∫
S

fX1,...,Xk

(
x(i)
)

L
(

x(i−1)
∣∣∣x(i)

)
dx(i−1)

= fX1,...,Xk

(
x(i)
)∫

S

L
(

x(i−1)
∣∣∣x(i)

)
dx(i−1) = fX1,...,Xk

(
x(i)
)

.

Since the function fX1,X2,...,Xk
satisfies the balance equations for the Markov process

{
X(i)}, we conclude that it

is the unique stationary distribution of the Markov process.

Note 5.1. Let Sj be the support of the marginal CDF FXj
for j = 1, 2, . . . , k. If S = S1 × S2 × · · · × Sk, then the

Markov process
{

X(i)} with state-space S and transition kernel K
(

x(i)
∣∣x(i−1)) is irreducible.

Note 5.2. i. The Markov Chain Monte Carlo algorithms require an initial number of iterations until the Markov
process which they produce converges to its stationary distribution, i.e. the given joint PDF. This initial
number of iterations is called the burn-in period of the algorithm and the sample which has been produced
during this period is thrown away since it doesn’t follow the given distribution.

ii. The observations which are produced by a Markov Chain Monte Carlo algorithm are not independent. On the
contrary, they display a dependence pattern which is determined by the properties of the Markov process that
the algorithm produces. The lack of independence of the observations doesn’t influence the approximation of
expected values via the Monte Carlo method. In cases where the use of random samples is required, we can
perform a thinning of the sample which is produced by the algorithm. If we calculate that up to T ∗ consecutive
observations which are produced by the algorithm display statistically significant autocorrelation, then we
accept only one out of every T ∗ observations produced by the algorithm and reject all the rest.

Example 5.1. We want to generate a sample (X1, Y1), . . . , (Xn, Yn) with PDF f(x, y) ∝ e−x−y−axy for x, y > 0
and a > 0. We observe that:

fX|Y (x | y) ∝ e−x−axy = e−(y+a)x, fY |X(y | x) ∝ e−y−axy = e−(x+a)y.

In other words, (X | Y = y) ∼ Exp(y + a) and (Y | X = x) ∼ Exp(x + a).

library(plot3D)

b = 10000

n = 10000

a = 2

X = numeric(b + n)

Y = numeric(b + n)

for (i in 2:(b + n)) {

U = runif(1)

X[i] = -log(U)/(Y[i - 1] + a)

V = runif(1)

Y[i] = -log(V)/(X[i] + a)

}

X = X[-(1:b)]

Y = Y[-(1:b)]

plot(X, Y, pch = 16, cex = 0.2)
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Example 5.2. We want to generate a sample (X1, Y1), . . . , (Xn, Yn) with PDF f(x, y) ∝ xke−(λ+y)x for x, y > 0
and k, λ > 0. We observe that:

fX|Y (x | y) ∝ xke−(λ+y)x, fY |X(y | x) ∝ e−xy.

In other words, (X | Y = y) ∼ Gamma(k + 1, λ + y) and (Y | X = x) ∼ Exp(x).

library(plot3D)

b = 10000

n = 10000

k = 10

lambda = 2

X = numeric(b + n)

Y = numeric(b + n)

for (i in 2:(b + n)) {

U = runif(k + 1)

R = -log(U)/(lambda + Y[i - 1])
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X[i] = sum(R)

V = runif(1)

Y[i] = -log(V)/X[i]

}

X = X[-(1:b)]

Y = Y[-(1:b)]

plot(X, Y, pch = 16, cex = 0.2)
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hist3D(z = table(cut(X, 20), cut(Y, 20)), colkey = FALSE, phi = 0, theta = 135,

border = 1)

xy

z

Example 5.3. We want to generate a sample (X1, Y1), . . . , (Xn, Yn) with PDF f(x, y) ∝ 1 for 0 ⩽ y ⩽ x ⩽ 1. We
observe that (X | Y = y) ∼ Unif[y, 1] for y ∈ [0, 1] and (Y | X = x) ∼ Unif[0, x] for x ∈ [0, 1].

library(plot3D)

b = 10000

n = 10000

X = numeric(b + n)

Y = numeric(b + n)

for (i in 2:(b + n)) {
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U = runif(1)

X[i] = (1 - Y[i - 1]) * U + Y[i - 1]

V = runif(1)

Y[i] = X[i] * V

}

X = X[-(1:b)]

Y = Y[-(1:b)]

plot(X, Y, pch = 16, cex = 0.2)
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hist3D(z = table(cut(X, 20), cut(Y, 20)), colkey = FALSE, phi = 0, theta = 225,

border = 1)
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Example 5.4. We want to generate a sample (X1, Y1), . . . , (Xn, Yn) with PDF f(x, y) ∝ x for 0 ⩽ x ⩽ y ⩽ 1.
For x ∈ [0, 1], we observe that fY |X(y | x) ∝ 1, i.e. (Y | X = x) ∼ Unif[x, 1]. For y ∈ [0, 1], we observe that
fX|Y (x | y) ∝ x. For x ∈ [0, y], we calculate that:

fX|Y (x | y) = 2x

y2 , FX|Y (x | y) = x2

y2 , F −1
X|Y (u | y) = y

√
u.
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library(plot3D)

b = 10000

n = 10000

X = numeric(b + n)

Y = numeric(b + n)

for (i in 2:(b + n)) {

U = runif(1)

X[i] = Y[i - 1] * sqrt(U)

V = runif(1)

Y[i] = (1 - X[i]) * V + X[i]

}

X = X[-(1:b)]

Y = Y[-(1:b)]

plot(X, Y, pch = 16, cex = 0.2)
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Example 5.5. For ρ ∈ (−1, 1), we want to generate a sample:

(X1, Y1), . . . , (Xn, Yn) ∼ N2

([
0
0

]
,

[
1 ρ

ρ 1

])
.

For x, y ∈ R, we calculate that:

fX,Y (x, y) = 1
2π
√

1− ρ2
exp

{
−x2 − 2ρxy + y2

2 (1− ρ2)

}
,

fX|Y (x | y) ∝ exp
{
−x2 − 2ρyx

2 (1− ρ2)

}
∝ exp

{
− (x− ρy)2

2 (1− ρ2)

}
,

fY |X(y | x) ∝ exp
{
−y2 − 2ρxy

2 (1− ρ2)

}
∝ exp

{
− (y − ρx)2

2 (1− ρ2)

}
.

In other words, (X | Y = y) ∼ N
(
ρy, 1− ρ2) and (Y | X = x) ∼ N

(
ρx, 1− ρ2).

library(plot3D)

b = 10000

n = 10000

rho = -0.5

lambda = 1/sqrt(1 - rhoˆ2)

M = sqrt(2 * exp(1)/pi)

X = numeric(b + n)

Y = numeric(b + n)

for (i in 2:(b + n)) {

W = runif(1)

X[i] = ifelse(W <= 0.5, rho * Y[i - 1] + log(2 * W)/lambda, rho * Y[i -

1] - log(2 * (1 - W))/lambda)

U = runif(1)

V = M * dexp(abs(X[i] - rho * Y[i - 1]), lambda)/2 * U

while (dnorm(X[i], rho * Y[i - 1], sqrt(1 - rhoˆ2)) < V) {

W = runif(1)

X[i] = ifelse(W <= 0.5, rho * Y[i - 1] + log(2 * W)/lambda, rho * Y[i -

1] - log(2 * (1 - W))/lambda)

U = runif(1)

V = M * dexp(abs(X[i] - rho * Y[i - 1]), lambda)/2 * U

}

W = runif(1)

Y[i] = ifelse(W <= 0.5, rho * X[i] + log(2 * W)/lambda, rho * X[i] - log(2 *

(1 - W))/lambda)

U = runif(1)

V = M * dexp(abs(Y[i] - rho * X[i]), lambda)/2 * U

while (dnorm(Y[i], rho * X[i], sqrt(1 - rhoˆ2)) < V) {

W = runif(1)
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Y[i] = ifelse(W <= 0.5, rho * X[i] + log(2 * W)/lambda, rho * X[i] -

log(2 * (1 - W))/lambda)

U = runif(1)

V = M * dexp(abs(Y[i] - rho * X[i]), lambda)/2 * U

}

}

X = X[-(1:b)]

Y = Y[-(1:b)]

plot(X, Y, pch = 16, cex = 0.2)
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Y

hist3D(z = table(cut(X, 20), cut(Y, 20)), colkey = FALSE, phi = 0, theta = 135,

border = 1)

xy

z

Example 5.6. We want to generate a sample (X1, Y1, Z1), . . . , (Xn, Yn, Zn) with the following PDF:

f(x, y, z) ∝
(

z

x

)
yx+a−1(1− y)zx+b−1 λz

z! , x ∈ {0, 1, . . . , z}, y ∈ [0, 1], z ∈ N.
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We observe that:

fX|Y,Z(x | y, z) ∝
(

z

x

)
yx(1− y)zx =

(
z

x

)
[y(1− y)z]x ∝

(
z

x

)[
y(1− y)z

y(1− y)z + 1

]x [ 1
y(1− y)z + 1

]z−x

,

fY |X,Z(y | x, z) ∝ yx+a−1(1− y)zx+b−1,

fZ|X,Y (z | x, y) ∝
(

z

x

)
(1− y)zx λz

z! ∝
[λ(1− y)x]z

(z − x)! ∝ [λ(1− y)x]z−x

(z − x)! .

In other words, (X | Y = y, Z = z) ∼ Binom
(

z, y(1−y)z

y(1−y)z+1

)
, (Y | X = x, Z = z) ∼ Beta(z + a, zx + b) and

(Z −X | X = x, Y = y) ∼ Poisson (λ(1− y)x).

b = 10000

n = 10000

a = 2

b = 3

lambda = 4

X = numeric(b + n)

Y = numeric(b + n)

Z = numeric(b + n)

for (i in 2:(b + n)) {

U = runif(Z[i - 1])

X[i] = sum(U < Y[i - 1] * (1 - Y[i - 1])ˆZ[i - 1]/(Y[i - 1] * (1 - Y[i -

1])ˆZ[i - 1] + 1))

M = dbeta((Z[i - 1] + a - 1)/(Z[i - 1] * (1 + X[i]) + a + b - 2), Z[i -

1] + a, Z[i - 1] * X[i] + b)

Y[i] = runif(1)

U = runif(1)

V = M * U

while (dbeta(Y[i], Z[i - 1] + a, Z[i - 1] * X[i] + b) < V) {

Y[i] = runif(1)

U = runif(1)

V = M * U

}

Z[i] = X[i]

U = runif(1)

pmf = exp(-(lambda * (1 - Y[i])ˆX[i]))

cdf = pmf

while (U > cdf) {

Z[i] = Z[i] + 1

pmf = pmf * lambda * (1 - Y[i])ˆX[i]/(Z[i] - X[i])

cdf = cdf + pmf

}

}

X = X[-(1:b)]
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Y = Y[-(1:b)]

Z = Z[-(1:b)]

barplot(table(factor(X, levels = 0:max(X)))/n, space = 0, xlab = "X")
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hist(Y, "FD", freq = FALSE, main = NA)
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barplot(table(factor(Z, levels = 0:max(Z)))/n, space = 0, xlab = "Z")
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Example 5.7. Let X ∼ Poisson(4) and Y ∼ Poisson(7) be independent random variables. We want to generate a
sample (X1, Y1), . . . , (Xn, Yn) following the conditional distribution of (X, Y ) given that X + Y ⩽ 10. For x, y ∈ N
with x + y ⩽ 10, we calculate that:

fX,Y |X+Y ⩽10(x, y) = fX,Y (x, y)
P(X + Y ⩽ 10) ∝

4x7y

x!y! ,

fX|Y,X+Y ⩽10(x | y) ∝ 4x

x! , fY |X,X+Y ⩽10(y | x) ∝ 7y

y! .

In other words, (X | Y = y, X + Y ⩽ 10) d= (X | X ⩽ 10− y) and (Y | X = x, X + Y ⩽ 10) d= (Y | Y ⩽ 10− x).

b = 10000

n = 10000

X = numeric(b + n)

Y = numeric(b + n)

for (i in 2:(b + n)) {

U = runif(1)

pmf = exp(-4)/ppois(10 - Y[i - 1], 4)

cdf = pmf

while (U > cdf) {

X[i] = X[i] + 1

pmf = pmf * 4/X[i]

cdf = cdf + pmf

}

V = runif(1)

pmf = exp(-7)/ppois(10 - X[i], 7)

cdf = pmf

while (V > cdf) {

Y[i] = Y[i] + 1

pmf = pmf * 7/Y[i]
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cdf = cdf + pmf

}

}

X = X[-(1:b)]

Y = Y[-(1:b)]

barplot(table(factor(X, levels = 0:max(X)))/n, space = 0, xlab = "X")
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barplot(table(factor(Y, levels = 0:max(Y)))/n, space = 0, xlab = "Y")
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Example 5.8. Let Xj ∼ Exp(λj) be independent random variables for j = 1, 2, . . . , k. We define the random
variable S = X1 +· · ·+Xk. We want to generate a sample X(1), X(2), . . . , X(n) following the conditional distribution
of (X1, X2, . . . , Xk) given that S > c. For x1, . . . , xk > 0 with x1 + · · ·+ xk > c, we calculate that:

fX1,...,Xk|S>c(x1, . . . , xk) = fX1,...,Xk
(x1, . . . , xk)

P(X1 + · · ·+ Xk > c) ∝
k∏

j=1
e−λjxj = exp

−
k∑

j=1
λjxj

 ,
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fXj |X−j ,S>c(xj | x−j) ∝ e−λjxj .

We let s−j = x1 + · · ·+ xj−1 + xj+1 + · · ·+ xk. Then, (Xj | X−j = x−j , S > c) d= (Xj | Xj > c− s−j). In other
words, we infer that (Xj | X−j = x−j , S > c) d= Xj + max {c− s−j , 0}.

b = 10000

n = 10000

c = 10

k = 4

lambda = rep(1, k)

X = matrix(0, b + n, k)

for (i in 2:(b + n)) {

for (j in 1:k) {

if (j == 1) {

s = sum(X[i - 1, -1])

} else if (j == k) {

s = sum(X[i, -k])

} else {

s = sum(c(X[i, 1:(j - 1)], X[i - 1, (j + 1):k]))

}

U = runif(1)

X[i, j] = max(c - s, 0) - log(U)/lambda[j]

}

}

X = X[-(1:b), ]

hist(X[, 1], "FD", freq = FALSE, main = NA, xlab = NA)
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Example 5.9. Let Y ∼ Unif[0.02, 0.1] be a random variable. Consider the conditionally independent random
variables (W1 | Y = y) , (W2 | Y = y) ∼ Exp(y). Given that W1 = w1 and W2 = w2, we define the conditionally
independent Poisson processes {N1(t) : t ⩾ 0} with rate w1 and {N2(t) : t ⩾ 0} with rate w2. We want to estimate
the following conditional expected values:

E [N1(1) | N1(0.5) = 25, N2(0.5) = 18] , E [N2(1) | N1(0.5) = 25, N2(0.5) = 18] .
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According to the law of iterated expectations, we calculate that:

E [N1(1) | N1(0.5) = 25, N2(0.5) = 18] = E [E (N1(1) |W1, N1(0.5) = 25, N2(0.5) = 18)]

= E [25 + 0.5W1 | N1(0.5) = 25, N2(0.5) = 18] ,

E [N2(1) | N1(0.5) = 25, N2(0.5)] = E [E (N2(1) |W2, N1(0.5) = 25, N2(0.5) = 18)]

= E [18 + 0.5W2 | N1(0.5) = 25, N2(0.5) = 18] .

We define the events A1 = [N1(0.5) = 25], A2 = [N2(0.5) = 18]. For y ∈ [0.02, 0.1] and w1, w2 > 0, we calculate
that:

fY,W1,W2|A1,A2(y, w1, w2) = fY,W1,W2(y, w1, w2)P [A1, A2 | Y = y, W1 = w1, W2 = w2]
P (A1, A2)

∝ fY (y)fW1,W2|Y (w1, w2 | y)P [A1 |W1 = w1]P [A2 |W2 = w2]

∝ fW1|Y (w1 | y)fW2|Y (w2 | y)e−0.5w1w25
1 e−0.5w2w18

2

= ye−yw1ye−yw2w25
1 w18

2 e−0.5(w1+w2) = y2w25
1 w18

2 e−(y+0.5)(w1+w2),

fY |W1,W2,A1,A2(y | w1, w2) ∝ y2e−(w1+w2)y,

fW1|Y,W2,A1,A2(w1 | y, w2) ∝ w25
1 e−(y+0.5)w1 ,

fW2|Y,W1,A1,A2(w2 | y, w1) ∝ w18
2 e−(y+0.5)w2 .

If (X |W1 = w1, W2 = w2) ∼ Gamma(3, w1 + w2), then:

[Y |W1 = w2, W2 = w2, A1, A2] d= (X |W1 = w1, W2 = w2, 0.02 ⩽ X ⩽ 0.1) ,

[W1 | Y = y, W2 = w2, A1, A2] ∼ Gamma(26, y + 0.5),

[W2 | Y = y, W1 = w1, A1, A2] ∼ Gamma(19, y + 0.5).

library(plot3D)

b = 10000

n = 10000

Y = numeric(b + n)

W1 = numeric(b + n)

W2 = numeric(b + n)

W1[1] = 1

W2[1] = 1

for (i in 2:(b + n)) {

U = runif(3)

R = -log(U)/(W1[i - 1] + W2[i - 1])

Y[i] = sum(R)

while (Y[i] < 0.02 || Y[i] > 0.1) {

U = runif(3)

R = -log(U)/(W1[i - 1] + W2[i - 1])

Y[i] = sum(R)

}
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U = runif(26)

R = -log(U)/(Y[i] + 0.5)

W1[i] = sum(R)

U = runif(19)

R = -log(U)/(Y[i] + 0.5)

W2[i] = sum(R)

}

Y = Y[-(1:b)]

W1 = W1[-(1:b)]

W2 = W2[-(1:b)]

scatter3D(W1, W2, Y, colvar = NA, phi = 0, theta = 315, xlab = "W1", ylab = "W2",

zlab = "Y", pch = 16, cex = 0.1)
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hist(Y, "FD", freq = FALSE, main = NA)
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hist(W1, "FD", freq = FALSE, main = NA, xlab = expression(W[1]))
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hist(W2, "FD", freq = FALSE, main = NA, xlab = expression(W[2]))
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mean(25 + 0.5 * W1)

## [1] 48.99764

mean(18 + 0.5 * W2)

## [1] 35.43046

Slice Sampling

We want to generate a sample X1, X2, . . . , Xn following the PDF f with support S and M = maxx∈S f(x). Suppose
that the application of the inverse transform method is impossible. Consider the random variables X, Y with joint
PDF fX,Y (x, y) = 1{y⩽f(x)} for x ∈ S and y ∈ [0, M ]. Then, we observe that:

fX(x) =
∫ M

0
fX,Y (x, y)dy =

∫ f(x)

0
1dy = f(x), fX|Y (x | y) ∝ 1{x∈f−1[y,∞)},
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where f−1[y,∞) = {x ∈ S : f(x) ⩾ y}. In other words, X ∼ f , (Y | X = x) ∼ Unif [0, f(x)] and the conditional
distribution of X given that Y = y is uniform on the set f−1[y,∞).

Algorithm 5.2 Slice Sampling
Input: PDF f , burn-in size b and sample size n.

1: We consider the initial value X1.

2: For i = 2, 3, . . . , b + n, we iterate the following steps:

i: We generate U ∼ Unif[0, 1] and let Y = f (Xi−1) U ∼ Unif [0, f (Xi−1)].

ii: We generate Xi following the uniform distribution on f−1[Y,∞).

Output: Random sample Xb+1, Xb+2, . . . , Xb+n following the PDF f .

Example 5.10. We want to generate a sample X1, X2, . . . , Xn following the PDF f(x) = e−
√

x/2 for x > 0. For
y ∈ [0, 0.5], we observe that f(x) ⩾ y ⇔ x ⩽ log2(2y). In other words, (X | Y = y) ∼ Unif

[
0, log2(2y)

]
.

b = 1000

n = 1000

X = numeric(b + n)

for (i in 2:(b + n)) {

U = runif(1)

Y = exp(-sqrt(X[i - 1]))/2 * U

V = runif(1)

X[i] = log(2 * Y)ˆ2 * V

}

X = X[-(1:b)]

hist(X, "FD", freq = FALSE, main = NA, xlab = NA)

curve(exp(-sqrt(x))/2, add = TRUE, col = "red", lwd = 2)
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Example 5.11. We want to generate a sample X1, . . . , Xn ∼ N
(
µ, σ2). For y ∈

[
0, 1√

2πσ

]
, we observe that:

f(x) ⩾ y ⇔ µ− σ

√
log 1

2πσ2y2 ⩽ x ⩽ µ + σ

√
log 1

2πσ2y2 .
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In other words,

(X | Y = y) ∼ Unif
[
µ− σ

√
log 1

2πσ2y2 , µ + σ

√
log 1

2πσ2y2

]
.

b = 10000

n = 10000

mu = 1

sigma = 2

X = numeric(b + n)

for (i in 2:(b + n)) {

U = runif(1)

Y = exp(-(X[i - 1] - mu)ˆ2/(2 * sigmaˆ2))/(sqrt(2 * pi) * sigma) * U

V = runif(1)

X[i] = 2 * sigma * sqrt(log(1/(2 * pi * sigmaˆ2 * Yˆ2))) * V + mu - sigma *

sqrt(log(1/(2 * pi * sigmaˆ2 * Yˆ2)))

}

X = X[-(1:b)]

hist(X, "FD", freq = FALSE, main = NA, xlab = NA)

curve(dnorm(x, mu, sigma), add = TRUE, col = "red", lwd = 2)
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Metropolis-Hastings Algorithm

We want to generate a sample X1, X2, . . . , Xn following the PDF f . Suppose that the application of the inverse
transform method or the slice sampling method is impossible.

The sequence of random variables {Xi} constitutes a discrete-time Markov process with transition kernel
K (xi | xi−1) = g (xi | xi−1) A (xi−1, xi).

Theorem 5.2. The Markov process {Xi} with transition kernel K (xi | xi−1) is reversible and f is its unique
stationary distribution.

Proof. If f(xi)
f(xi−1) < g(xi|xi−1)

g(xi−1|xi) , then it holds that:

A (xi−1, xi) = f(xi)g (xi−1 | xi)
f (xi−1) g (xi | xi−1) , A (xi, xi−1) = 1.
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Algorithm 5.3 Metropolis-Hastings
Input: PDF f , conditional proposal PDF g, burn-in size b and sample size n.

1: We consider an initial value X1.

2: For i = 2, 3, . . . , b + n, we iterate the following steps:

i: We generate Y following the conditional PDF g (y | Xi−1).

ii: We generate U ∼ Unif[0, 1] and calculate the acceptance probability:

A (Xi−1, Y ) = min
{

f(Y )g (Xi−1 | Y )
f (Xi−1) g (Y | Xi−1) , 1

}
.

iii: If U < A (Xi−1, Y ), then we let Xi = Y . Otherwise, we let Xi = Xi−1.

Output: Random sample Xb+1, Xb+2, . . . , Xb+n following the PDF f .

If f(xi)
f(xi−1) > g(xi|xi−1)

g(xi−1|xi) , then it holds that:

A (xi−1, xi) = 1, A (xi, xi−1) = f (xi−1) g (xi | xi−1)
f(xi)g (xi−1 | xi)

.

Therefore, we infer that:

f (xi−1) g (xi | xi−1) min
{

f(xi)g (xi−1 | xi)
f (xi−1) g (xi | xi−1) , 1

}
= f(xi)g (xi−1 | xi) min

{
f (xi−1) g (xi | xi−1)

f(xi)g (xi−1 | xi)
, 1
}

,

f (xi−1) K (xi | xi−1) = f (xi−1) g (xi | xi−1) A (xi−1, xi)

= f (xi) g (xi−1 | xi) A (xi, xi−1) = f (xi) K (xi−1 | xi) .

Since the function f satisfies the detailed balance equations for the Markov process {Xi}, we conclude that the
process {Xi} is reversible with unique stationary distribution f .

Example 5.12. We want to generate a sample X1, . . . , Xn ∼ Bin(k, p). We consider the following conditional
proposal PMF:

g(y | x) =



0.5, x ∈ {1, 2, . . . , k − 1}, y = x + 1

0.5, x ∈ {1, 2, . . . , k − 1}, y = x− 1

1, x = 0, y = 1

1, x = k, y = k − 1

,

i.e. the symmetric random walk on the state-space S = {0, 1, . . . , k} with reflecting barriers at states {0} and {k}.
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Then, we calculate that:

f(y)g (x | y)
f (x) g (y | x) =



k−x
x+1

p
1−p , x ∈ {1, 2, . . . , k − 2}, y = x + 1

x
k−x+1

1−p
p , x ∈ {2, 3, . . . , k − 1}, y = x− 1

k
2

p
1−p , x = 0, y = 1

2
k

1−p
p , x = 1, y = 0

2
k

p
1−p , x = k − 1, y = k

k
2

1−p
p , x = k, y = k − 1

.

b = 10000

n = 10000

k = 20

p = 0.4

X = numeric(b + n)

for (i in 2:(b + n)) {

if (X[i - 1] == 0) {

Y = 1

A = k/2 * p/(1 - p)

} else if (X[i - 1] == k) {

Y = k - 1

A = k/2 * (1 - p)/p

} else {

V = runif(1)

if (V < 0.5) {

Y = X[i - 1] + 1

if (Y == k) {

A = 2/k * p/(1 - p)

} else {

A = (k - X[i - 1])/(X[i - 1] + 1) * p/(1 - p)

}

} else {

Y = X[i - 1] - 1

if (Y == 0) {

A = 2/k * (1 - p)/p

} else {

A = X[i - 1]/(k - X[i - 1] + 1) * (1 - p)/p

}

}

}

U = runif(1)

X[i] = ifelse(U < A, Y, X[i - 1])

}
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X = X[-(1:b)]

barplot(table(factor(X, levels = 0:k))/n, space = 0)

lines(0:k + 0.5, dbinom(0:k, k, p), col = "red", lwd = 2)
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Example 5.13. Let X ∼ Poisson(λ) be a random variable. We want to generate a sample X1, X2, . . . , Xn following
the conditional distribution of X given that X ⩽ k. For x ∈ {0, 1, . . . , k}, we observe that fX|X⩽k(x) ∝ λx

x! . We
consider the following conditional proposal PMF:

g(y | x) =



0.5, x ∈ {0, 1, . . . , k − 1}, y = x + 1

0.5, x ∈ {1, 2, . . . , k}, y = x− 1

0.5, x = 0, y = 0

0.5, x = k, y = k

,

i.e. the symmetric random walk on the state-space S = {0, 1, . . . , k} with elastic barriers at states {0} and {k}.
Then, we calculate that:

f(y)g (x | y)
f (x) g (y | x) =



λ
x+1 , x ∈ {0, 1, . . . , k − 1}, y = x + 1

x
λ , x ∈ {1, 2, . . . , k}, y = x− 1

1, x = y = 0

1, x = y = k

.

b = 10000

n = 10000

lambda = 10

k = 15

X = numeric(b + n)

for (i in 2:(b + n)) {

V = runif(1)

if (X[i - 1] == 0) {

if (V < 0.5) {
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Y = 0

A = 1

} else {

Y = 1

A = lambda

}

} else if (X[i - 1] == k) {

if (V < 0.5) {

Y = k

A = 1

} else {

Y = k - 1

A = k/lambda

}

} else {

if (V < 0.5) {

Y = X[i - 1] + 1

A = lambda/(X[i - 1] + 1)

} else {

Y = X[i - 1] - 1

A = X[i - 1]/lambda

}

}

U = runif(1)

X[i] = ifelse(U < A, Y, X[i - 1])

}

X = X[-(1:b)]

barplot(table(factor(X, levels = 0:k))/n, space = 0)

lines(0:k + 0.5, dpois(0:k, lambda)/ppois(k, lambda), col = "red", lwd = 2)
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Example 5.14. We want to generate a sample X1, X2, . . . , Xn following the PDF:

f(x) = 1
2
√

2πσ2
exp

{
− 1

2σ2 (x− µ)2
}

+ 1
2
√

2πσ2
exp

{
− 1

2σ2 (x + µ)2
}

.

We consider the proposal random variable Y ∼ N
(
0, σ2 + µ2) with PDF:

g(y) = 1√
2π (σ2 + µ2)

exp
{
− 1

2 (σ2 + µ2)y2
}

.

We observe that the proposal PDF doesn’t depend on the current state of the Markov process {Xi}.

b = 10000

n = 10000

mu = 4

sigma = 2

lambda = 1/sqrt(sigmaˆ2 + muˆ2)

M = sqrt(2 * exp(1)/pi)

accept = 0

X = numeric(b + n)

for (i in 2:(b + n)) {

W = runif(1)

Y = ifelse(W <= 0.5, log(2 * W)/lambda, -log(2 * (1 - W))/lambda)

U = runif(1)

V = M * dexp(abs(Y), lambda)/2 * U

while (dnorm(Y, 0, sqrt(sigmaˆ2 + muˆ2)) < V) {

W = runif(1)

Y = ifelse(W <= 0.5, log(2 * W)/lambda, -log(2 * (1 - W))/lambda)

U = runif(1)

V = M * dexp(abs(Y), lambda)/2 * U

}

A = (0.5 * dnorm(Y, mu, sigma) + 0.5 * dnorm(Y, -mu, sigma)) * dnorm(X[i -

1], 0, sqrt(sigmaˆ2 + muˆ2))/((0.5 * dnorm(X[i - 1], mu, sigma) + 0.5 *

dnorm(X[i - 1], -mu, sigma)) * dnorm(Y, 0, sqrt(sigmaˆ2 + muˆ2)))

U = runif(1)

if (U < A) {

X[i] = Y

if (i > b) {

accept = accept + 1

}

} else {

X[i] = X[i - 1]

}

}

X = X[-(1:b)]

hist(X, "FD", freq = FALSE, main = NA, xlab = NA)
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curve(0.5 * dnorm(x, mu, sigma) + 0.5 * dnorm(x, -mu, sigma), add = TRUE, col = "red",

lwd = 2)

curve(dnorm(x, 0, sqrt(sigmaˆ2 + muˆ2)), add = TRUE, col = "blue", lwd = 2)

D
en

si
ty

−10 −5 0 5 10

0.
00

0.
04

0.
08

plot(X, type = "l")
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print(accept/n)

## [1] 0.6781

For the correct implementation of the Metropolis-Hastings algorithm with proposal PDF which doesn’t depend on
the current state of the Markov process {Xi}, we must select a suitable proposal density, so that the percentage of
accepted proposal states of the algorithm is close to 100%.

If it holds that g (y | xi−1) = g (xi−1 | y) for the conditional proposal PDF, then the algorithm is called Random
Walk Metropolis-Hastings. We observe that:

A (xi−1, y) = min
{

f(y)
f (xi−1) , 1

}
.
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If f(y) > f (xi−1), then we infer that A (xi−1, y) = 1. In other words, the Markov process transitions to a proposal
state with higher density than the current one with probability 1. If the proposal state has lower density than the
current one, then the Markov process transitions to it with probability A (xi−1, y) ∈ (0, 1).

We consider the proposal random variable (Y | Xi−1 = xi−1) ∼ N
(
xi−1, σ2

p

)
with conditional PDF:

g (y | xi−1) = 1√
2πσp

exp
{
− 1

2σ2
p

(y − xi−1)2
}

.

b = 10000

n = 10000

mu = 4

sigma = 2

sigmap = 100

lambda = 1/sigmap

M = sqrt(2 * exp(1)/pi)

accept = 0

X = numeric(b + n)

for (i in 2:(b + n)) {

W = runif(1)

Y = ifelse(W <= 0.5, X[i - 1] + log(2 * W)/lambda, X[i - 1] - log(2 * (1 -

W))/lambda)

U = runif(1)

V = M * dexp(abs(Y - X[i - 1]), lambda)/2 * U

while (dnorm(Y, X[i - 1], sigmap) < V) {

W = runif(1)

Y = ifelse(W <= 0.5, X[i - 1] + log(2 * W)/lambda, X[i - 1] - log(2 *

(1 - W))/lambda)

U = runif(1)

V = M * dexp(abs(Y - X[i - 1]), lambda)/2 * U

}

A = (0.5 * dnorm(Y, mu, sigma) + 0.5 * dnorm(Y, -mu, sigma))/(0.5 * dnorm(X[i -

1], mu, sigma) + 0.5 * dnorm(X[i - 1], -mu, sigma))

U = runif(1)

if (U < A) {

X[i] = Y

if (i > b) {

accept = accept + 1

}

} else {

X[i] = X[i - 1]

}

}

X = X[-(1:b)]
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hist(X, "FD", freq = FALSE, main = NA, xlab = NA)

curve(0.5 * dnorm(x, mu, sigma) + 0.5 * dnorm(x, -mu, sigma), add = TRUE, col = "red",

lwd = 2)
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plot(X, type = "l")
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print(accept/n)

## [1] 0.0502

When the variance σ2
p of the proposal density is too high, then we observe that the algorithm proposes states too

far away from the current state of the Markov process. These states have really low density, so there’s a very small
probability that the Markov process transitions to them. Consequently, the Markov process is trapped in the same
state for large periods of time and doesn’t adequately explore the entire support of the PDF f .

b = 10000

n = 10000

mu = 4

sigma = 2
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sigmap = 0.1

lambda = 1/sigmap

M = sqrt(2 * exp(1)/pi)

accept = 0

X = numeric(b + n)

for (i in 2:(b + n)) {

W = runif(1)

Y = ifelse(W <= 0.5, X[i - 1] + log(2 * W)/lambda, X[i - 1] - log(2 * (1 -

W))/lambda)

U = runif(1)

V = M * dexp(abs(Y - X[i - 1]), lambda)/2 * U

while (dnorm(Y, X[i - 1], sigmap) < V) {

W = runif(1)

Y = ifelse(W <= 0.5, X[i - 1] + log(2 * W)/lambda, X[i - 1] - log(2 *

(1 - W))/lambda)

U = runif(1)

V = M * dexp(abs(Y - X[i - 1]), lambda)/2 * U

}

A = (0.5 * dnorm(Y, mu, sigma) + 0.5 * dnorm(Y, -mu, sigma))/(0.5 * dnorm(X[i -

1], mu, sigma) + 0.5 * dnorm(X[i - 1], -mu, sigma))

U = runif(1)

if (U < A) {

X[i] = Y

if (i > b) {

accept = accept + 1

}

} else {

X[i] = X[i - 1]

}

}

X = X[-(1:b)]

hist(X, "FD", freq = FALSE, main = NA, xlim = c(-11, 11), xlab = NA)

curve(0.5 * dnorm(x, mu, sigma) + 0.5 * dnorm(x, -mu, sigma), add = TRUE, col = "red",

lwd = 2)
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plot(X, type = "l")
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print(accept/n)

## [1] 0.9874

When the variance σ2
p of the proposal PDF is too low, then we observe that the algorithm proposes states very

close to the current state of the Markov process. Since the Markov process transitions to proposal states with
higher density than the current state with probability 1, it tends to transition towards the closest mode of the
PDF f . Consequently, the Markov process is trapped around a mode of f and doesn’t adequately explore the
entire support of f .

b = 10000

n = 10000

mu = 4

sigma = 2

sigmap = 10

lambda = 1/sigmap

M = sqrt(2 * exp(1)/pi)
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accept = 0

X = numeric(b + n)

for (i in 2:(b + n)) {

W = runif(1)

Y = ifelse(W <= 0.5, X[i - 1] + log(2 * W)/lambda, X[i - 1] - log(2 * (1 -

W))/lambda)

U = runif(1)

V = M * dexp(abs(Y - X[i - 1]), lambda)/2 * U

while (dnorm(Y, X[i - 1], sigmap) < V) {

W = runif(1)

Y = ifelse(W <= 0.5, X[i - 1] + log(2 * W)/lambda, X[i - 1] - log(2 *

(1 - W))/lambda)

U = runif(1)

V = M * dexp(abs(Y - X[i - 1]), lambda)/2 * U

}

A = (0.5 * dnorm(Y, mu, sigma) + 0.5 * dnorm(Y, -mu, sigma))/(0.5 * dnorm(X[i -

1], mu, sigma) + 0.5 * dnorm(X[i - 1], -mu, sigma))

U = runif(1)

if (U < A) {

X[i] = Y

if (i > b) {

accept = accept + 1

}

} else {

X[i] = X[i - 1]

}

}

X = X[-(1:b)]

hist(X, "FD", freq = FALSE, main = NA, xlab = NA)

curve(0.5 * dnorm(x, mu, sigma) + 0.5 * dnorm(x, -mu, sigma), add = TRUE, col = "red",

lwd = 2)
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plot(X, type = "l")
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print(accept/n)

## [1] 0.4041

For the correct implementation of the Random Walk Metropolis-Hastings algorithm, we must select a suitable
value for the variance σ2

p of the proposal PDF, so that the percentage of accepted proposal states of the algorithm
is close to 50%.

Data Augmentation

We want to generate a sample X1, X2, . . . , Xn following the PDF f . Suppose that the application of the inverse
transform method is impossible. Consider two random variables X ∼ f and Y . First, suppose that it’s easy to
simulate from the conditional PDF fX|Y . Then, we calculate that:

fY |X(y | x) =
fY (y)fX|Y (x | y)

f(x) ∝ fY (y)fX|Y (x | y).

Alternatively, suppose that it’s easy to simulate from the conditional PDF fY |X . Then, we calculate that:

fX|Y (x | y) =
fX(x)fY |X(y | x)

f(y) ∝ fX(x)fY |X(y | x).

In either of these two cases, we can then proceed with applying a Gibbs sampler to alternatively simulate from the
conditional distributions of X given Y and Y given X.

Example 5.15. We want to generate a sample X1, X2, . . . , Xn following the PDF:

f(x) = 1
2
√

2πσ2
exp

{
− 1

2σ2 (x− µ)2
}

+ 1
2
√

2πσ2
exp

{
− 1

2σ2 (x + µ)2
}

.

Consider two random variables X ∼ f and Y ∼ Bernoulli(0.5). Suppose that (X | Y = 0) ∼ N
(
µ, σ2) and
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Algorithm 5.4 Data Augmentation
Input: Conditional PDFs fX|Y , fY |X , burn-in size b and sample size n.

1: We consider an initial value X1.

2: For i = 2, 3, . . . , b + n, we iterate the following steps:

i: We generate Y following the conditional PDF fY |X (y | Xi−1).

ii: We generate Xi following the conditional PDF fX|Y (x | Y ).

Output: Random sample Xb+1, Xb+2, . . . , Xb+n following the PDF f .

(X | Y = 1) ∼ N
(
−µ, σ2). Then, we calculate that:

P(Y = 0 | X = x) ∝ P(Y = 0)fX|Y (x | 0) ∝ exp
{
− 1

2σ2 (x− µ)2
}

,

P(Y = 1 | X = x) ∝ P(Y = 1)fX|Y (x | 1) ∝ exp
{
− 1

2σ2 (x + µ)2
}

,

(Y | X = x) ∼ Bernoulli
(

exp
{
− 1

2σ2 (x + µ)2}
exp

{
− 1

2σ2 (x− µ)2
}

+ exp
{
− 1

2σ2 (x + µ)2
}) ≡ Bernoulli

(
1

e2µx/σ2 + 1

)
.

b = 10000

n = 10000

mu = 4

sigma = 2

lambda = 1/sigma

M = sqrt(2 * exp(1)/pi)

X = numeric(b + n)

for (i in 2:(b + n)) {

U = runif(1)

Y = U < 1/(exp(2 * mu * X[i - 1]/sigmaˆ2) + 1)

if (Y == 0) {

W = runif(1)

X[i] = ifelse(W <= 0.5, mu + log(2 * W)/lambda, mu - log(2 * (1 - W))/lambda)

U = runif(1)

V = M * dexp(abs(X[i] - mu), lambda)/2 * U

while (dnorm(X[i], mu, sigma) < V) {

W = runif(1)

X[i] = ifelse(W <= 0.5, mu + log(2 * W)/lambda, mu - log(2 * (1 -

W))/lambda)

U = runif(1)

V = M * dexp(abs(X[i] - mu), lambda)/2 * U

}

} else {

W = runif(1)
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X[i] = ifelse(W <= 0.5, -mu + log(2 * W)/lambda, -mu - log(2 * (1 -

W))/lambda)

U = runif(1)

V = M * dexp(abs(X[i] + mu), lambda)/2 * U

while (dnorm(X[i], -mu, sigma) < V) {

W = runif(1)

X[i] = ifelse(W <= 0.5, -mu + log(2 * W)/lambda, -mu - log(2 * (1 -

W))/lambda)

U = runif(1)

V = M * dexp(abs(X[i] + mu), lambda)/2 * U

}

}

}

X = X[-(1:b)]

hist(X, "FD", freq = FALSE, main = NA, xlab = NA)

curve(0.5 * dnorm(x, mu, sigma) + 0.5 * dnorm(x, -mu, sigma), add = TRUE, col = "red",

lwd = 2)
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Example 5.16. We want to generate a sample X1, X2, . . . , Xn following the PDF f(x) ∝ x34(1− x)38(2 + x)125

for x ∈ [0, 1]. Consider two random variables X ∼ f and Y . Suppose that (Y | X = x) ∼ Bin
(

125, x
2+x

)
, For

y ∈ {0, 1, . . . , 125}, we calculate that:

fX|Y (x | y) ∝ f(x)fY |X(y | x)

∝ x34(1− x)38(2 + x)125
(

125
y

)(
x

2 + x

)y (
1− x

2 + x

)125−y

∝ xy+34(1− x)38.

In other words, (X | Y = y) ∼ Beta(y + 35, 39).

b = 10000

n = 10000

X = numeric(b + n)

for (i in 2:(b + n)) {
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U = runif(125)

Y = sum(U < X[i - 1]/(2 + X[i - 1]))

M = dbeta((Y + 34)/(Y + 72), Y + 35, 39)

X[i] = runif(1)

U = runif(1)

V = M * U

while (dbeta(X[i], Y + 35, 39) < V) {

X[i] = runif(1)

U = runif(1)

V = M * U

}

}

X = X[-(1:b)]

hist(X, "FD", freq = FALSE, main = NA, xlab = NA)
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Simulated Annealing

We want to maximize the function h : S → R with
∫

S
eh(x)dx <∞. We define the maximum value h∗ = maxx∈S h(x)

and the set of maxima M = {x ∈ S : h(x) = h∗}. For i ∈ N, we consider the following PDF:

fi(x) ∝ eλih(x) ∝ eλi[h(x)−h∗].

We observe that h(x)− h∗ < 0 for x /∈M and h(x)− h∗ = 0 for x ∈M . If λi →∞, then we infer that:

lim
i→∞

fi(x) ∝ 1{x∈M}.

If Xi ∼ fi for i ∈ N, the sequence of random variables {Xi} converges in distribution to a random variable which
follows the uniform distribution on the set M . In order to simulate from the PDF fi we usually apply a Random
Walk Metropolis-Hastings algorithm with λi = λ1 log i or λi = λ1ri−1 for λ1 > 0 and r > 1.

Example 5.17. We want to maximize the function h(x) = [cos(50x) + sin(20x)]2 for x ∈ [0, 1]. We consider the
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Algorithm 5.5 Simulated Annealing
Input: Function h, conditional proposal PDF g, sequence λi and sample size n.

1: We consider an initial value X1.

2: For i = 2, 3, . . . , n, we iterate the following steps:

i: We generate Y following the conditional PDF g (y | Xi−1).

ii: We generate U ∼ Unif[0, 1] and calculate the acceptance probability:

A (Xi−1, Y ) = min
{

eλi[h(Y )−h(Xi−1)], 1
}

.

iii: If U < A (Xi−1, Y ), then we let Xi = Y . Otherwise, we let Xi = Xi−1.

Output: Maximum value h∗ = maxi h(Xi).

proposal random variable (Y | Xi−1 = xi−1) ∼ Unif [xi−1 − si, xi−1 + si] with the following conditional PDF:

g (y | xi−1) = 1
2si

.

h = function(x) {

ifelse(x >= 0 & x <= 1, (cos(50 * x) + sin(20 * x))ˆ2, 0)

}

curve(h(x), lwd = 2)
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h(
x)

optimize(h, c(0, 1), maximum = TRUE)

## $maximum

## [1] 0.379125

##

## $objective
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## [1] 3.832543

n = 10000

lambda1 = 1

X = numeric(n)

for (i in 2:n) {

lambda = lambda1 * log(i)

s = sqrt(lambda)

V = runif(1)

Y = 2 * s * V + X[i - 1] - s

logA = lambda * (h(Y) - h(X[i - 1]))

U = runif(1)

X[i] = ifelse(log(U) < logA, Y, X[i - 1])

}

plot(X, type = "l", ylim = c(0, 1))
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hstar = max(h(X))

print(hstar)

## [1] 3.832543

I = which(h(X) == hstar)

print(unique(X[I]))

## [1] 0.3791546
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6 Bootstrap Method

Definition 6.1. Let X1, X2, . . . , Xn be a random sample. For x ∈ R, we define the empirical CDF of the random
sample as follows:

Fn(x) = 1
n

n∑
i=1

1{Xi⩽x}.

Let X1, X2, . . . , Xn be a random sample following the CDF F with parameter θ. Consider an estimator T (X) of θ.
We want to estimate the expected value E [h(T )]. Suppose that it’s not efficient to simulate from the CDF F . On
the contrary, we can easily generate random samples X

(1)
∗ , X

(2)
∗ , . . . , X

(B)
∗ following the empirical CDF Fn of the

random sample X1, X2, . . . , Xn. If T ∗
j = T

(
X

(j)
∗

)
for j = 1, 2, . . . , B, then we can estimate the expected value

E [h(T )] as follows:
1
B

B∑
j=1

h
(
T ∗

j

)
.

Algorithm 6.1 Non-Parametric Bootstrap
Input: Random sample X, statistic T (X) and bootstrap sample size B.

For j = 1, 2, . . . , B, we iterate the following steps:

i: We generate U1, . . . , Un ∼ Unif[0, 1] and let Ii = ⌊nUi⌋+ 1 for i = 1, 2, . . . , n.

ii: We let X
(j)
∗ = (XI1 , XI2 , . . . , XIn) and T ∗

j = T
(

X
(j)
∗

)
.

Output: Bootstrap statistics T ∗
1 , T ∗

2 , . . . , T ∗
B .

Example 6.1. Let U1, U2, · · · ∼ Unif[0, 1] be a sequence of independent random variables. We define the random
variable:

X = sup {k ∈ N : U1 < U2 < · · · < Uk−1} .

Consider the parameter θ =
√

E (X2) and a random sample X1, X2, . . . , Xn from the distribution of X. We define
an estimator of θ as follows:

T (X) =
√

1
n

∑n

i=1
X2

i .

We want to estimate the expected value, the variance, the bias and the mean squared error of the estimator T (X).
Additionally, we want to construct a 100(1− α)% confidence interval for θ.

X = c(2, 4, 3, 2, 2, 2, 2, 3, 3, 2)

n = length(X)

t = sqrt(mean(Xˆ2))

B = 10000

Tstar = numeric(B)

for (j in 1:B) {

U = runif(n)

I = floor(n * U) + 1

Xstar = X[I]

Tstar[j] = sqrt(mean(Xstarˆ2))

}
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Tbar = mean(Tstar)

print(Tbar)

## [1] 2.577908

VarT = mean((Tstar - Tbar)ˆ2)

print(VarT)

## [1] 0.05363952

bias = mean(Tstar - t)

print(bias)

## [1] -0.01052766

MSE = mean((Tstar - t)ˆ2)

print(MSE)

## [1] 0.05375035

We define:

T
∗ = 1

B

b∑
j=1

T ∗
j , S2

∗ = 1
B

B∑
j=1

(
T ∗

j − T
∗)2

.

Then, we get the following bootstrap normal confidence interval for θ:[
T

∗ − z1−α/2S∗, T
∗ + z1−α/2S∗

]
.

Alternatively, we can use the following bootstrap percentile confidence interval for θ:[
T ∗

(⌊Bα/2⌋), T ∗
(⌈B(1−α/2)⌉)

]
.

Finally, we can use the following bootstrap pivotal confidence interval for θ:[
2T − T ∗

(⌈B(1−α/2)⌉), 2T − T ∗
(⌊Bα/2⌋)

]
.

alpha = 0.05

I = c(Tbar - qnorm(1 - alpha/2) * sqrt(VarT), Tbar + qnorm(1 - alpha/2) * sqrt(VarT))

print(I)

## [1] 2.123976 3.031840

Tstar = sort(Tstar)

I = c(Tstar[floor(B * alpha/2)], Tstar[ceiling(B * (1 - alpha/2))])

print(I)

## [1] 2.121320 3.016621

I = c(2 * t - Tstar[ceiling(B * (1 - alpha/2))], 2 * t - Tstar[floor(B * alpha/2)])

print(I)
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## [1] 2.160251 3.055551

Example 6.2. Let X1, . . . , Xn ∼ N
(
µ, σ2) be a random sample. We know that the statistic of the one-sided test

of the hypotheses H0 : µ = µ0 vs. H1 : µ < µ0 is equal to:

T (X) = X − µ0

S/
√

n
.

n = 20

mu = 0

sigma = 2

U = runif(n/2)

D = -2 * log(U)

V = runif(n/2)

Theta = 2 * pi * V

Z = sqrt(D) * c(cos(Theta), sin(Theta))

X = sigma * Z + mu

Algorithm 6.2 Normal Hypothesis Test by Use of Non-Parametric Bootstrap
Input: Random sample X, statistic T (X) and bootstrap sample size B.

1: For j = 1, 2, . . . , B, we iterate the following steps:

i: We generate U1, . . . , Un ∼ Unif[0, 1] and let Ii = ⌊nUi⌋+ 1 for i = 1, 2, . . . , n.

ii: We let X
(j)
∗ = (XI1 , XI2 , . . . , XIn

).

iii: We calculate the sample average X
∗
j and the square root S∗

j of the sample variance of X
(j)
∗ .

iv: We calculate the statistic:

T ∗
j =

X
∗
j −X

S∗
j /
√

n
.

2: We calculate:

N∗ =
B∑

j=1
1{T ∗

j
⩽T}, p∗ = N∗ + 1

B + 1 .

Output: Estimated p-value p∗ of the hypothesis test.

mu0 = 1

alpha = 0.05

Xbar = mean(X)

S = sd(X)

t = (Xbar - mu0) * sqrt(n)/S

pval = pt(t, n - 1)

print(pval)

## [1] 0.01179182
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B = 10000

Tstar = numeric(B)

for (j in 1:B) {

U = runif(n)

I = floor(n * U) + 1

Xstar = X[I]

Xbarstar = mean(Xstar)

Sstar = sd(Xstar)

Tstar[j] = (Xbarstar - Xbar) * sqrt(n)/Sstar

}

pval = (sum(Tstar <= t) + 1)/(B + 1)

print(pval)

## [1] 0.00909909

Algorithm 6.3 Normal Hypothesis Test by Use of Parametric Bootstrap
Input: Random sample X, statistic T (X) and bootstrap sample size B.

1: We calculate the MLE of σ2 under H0 : µ = µ0 as follows:

σ̂2
0 = 1

n

n∑
i=1

(Xi − µ0)2
.

2: For j = 1, 2, . . . , B, we iterate the following steps:

i: We generate a random sample X
(j)
∗ of size n following the N

(
µ0, σ̂2

0
)

distribution.

ii: We calculate the sample average X
∗
j and the square root S∗

j of the sample variance of X
(j)
∗ .

iii: We calculate the statistic:

T ∗
j =

X
∗
j − µ0

S∗
j /
√

n
.

3: We calculate:

N∗ =
B∑

j=1
1{T ∗

j
⩽T}, p∗ = N∗ + 1

B + 1 .

Output: Estimated p-value p∗ of the hypothesis test.

sigma0 = sqrt(mean((X - mu0)ˆ2))

for (j in 1:B) {

U = runif(n/2)

D = -2 * log(U)

V = runif(n/2)

Theta = 2 * pi * V

Z = sqrt(D) * c(cos(Theta), sin(Theta))

Xstar = sigma0 * Z + mu0
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Xbarstar = mean(Xstar)

Sstar = sd(Xstar)

Tstar[j] = (Xbarstar - mu0) * sqrt(n)/Sstar

}

pval = (sum(Tstar <= t) + 1)/(B + 1)

print(pval)

## [1] 0.01129887
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