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1 Finite Mixtures of Distributions

Let y1, . . . , yn be a sample of independent observations from a mixture distribution with PMF or PDF:

fϑ(yi) =
K∑

k=1
pkfθk

(yi).
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The observed-data likelihood for ϑ = (p1, . . . , pK , θ1, . . . , θK) is given by:

L(ϑ | y) =
n∏

i=1

[
K∑

k=1
pkfθk

(yi)
]

,

so it’s impossible to find a closed form solution to its maximization problem.

We insert the latent variables X1, . . . , Xn with Pp(Xi = k) = pk. Then, (Yi | Xi = k) ∼ fθk
(·). The complete-data

likelihood, i.e. the joint likelihood of the observed variables yi and the latent variables xi, is given by:

L(ϑ | y, x) =
n∏

i=1
fϑ(yi, xi) =

n∏
i=1

[Pp(Xi = xi)fθ (yi | Xi = xi)]

=
n∏

i=1

[
pxi

fθxi
(yi)

]
=

n∏
i=1

K∏
k=1

[pkfθk
(yi)]1{xi=k}

.

rpoismix = function(n, theta, p) {

K = length(theta)

X = sample(K, n, replace = TRUE, p)

Y = rpois(n, theta[X])

return(list(Y = Y, X = X))

}

n = 10000

K = 3

theta = c(5, 15, 25)

p = c(0.2, 0.5, 0.3)

mix = rpoismix(n, theta, p)

Y = mix$Y

X = mix$X

barplot(table(factor(Y, levels = 0:max(Y)))/n, space = 0)

lines(0:max(Y) + 0.5, p[1] * dpois(0:max(Y), theta[1]) + p[2] * dpois(0:max(Y),

theta[2]) + p[3] * dpois(0:max(Y), theta[3]), col = "red", lwd = 2)

lines(0:max(Y) + 0.5, p[1] * dpois(0:max(Y), theta[1]), col = "purple", lty = 2,

lwd = 2)

lines(0:max(Y) + 0.5, p[2] * dpois(0:max(Y), theta[2]), col = "purple", lty = 2,

lwd = 2)

lines(0:max(Y) + 0.5, p[3] * dpois(0:max(Y), theta[3]), col = "purple", lty = 2,

lwd = 2)
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n = 1000

mix = rpoismix(n, theta, p)

Y = mix$Y

X = mix$X

plot(Y, pch = 16, col = X, cex = 0.5)

0 200 400 600 800 1000

0
10

20
30

40

Index

Y

2 Expectation-Maximization (EM) Algorithm

Instead of directly maximizing the observed-data likelihood, we work iteratively. We start with some initial estimate
ϑ(0). We calculate the conditional expectation of the complete-data log-likelihood ℓ(ϑ | y, x) = log L(ϑ | y, x) given
the observed variables under the parameter value ϑ(0), i.e. the following function:

Qϑ(0)(ϑ) = Eϑ(0) [ℓ(ϑ | y, X) | y] .

This function is called the intermediate quantity of the EM algorithm. This step of the EM algorithm is called the
Expectation step (E-step). Afterwards, we maximize the function Qϑ(0)(ϑ) with respect to ϑ and we get a new
estimate ϑ(1). This step of the EM algorithm is called the Maximization step (M-step). We iterate these two steps
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until the algorithm converges to some estimate ϑ∗.

Theorem 1. If the observed-data likelihood L(ϑ | y) is bounded, then the value ϑ∗ to which the EM algorithm
converges is one of its local maxima.

Proof. First, we observe that:

L(ϑ | y, x) = fϑ(x, y) = fϑ(y)fϑ(x | y) = L(ϑ | y)fϑ(x | y).

We take the logs of both sides in the above equation:

ℓ(ϑ | y, x) = ℓ(ϑ | y) + log fϑ(x | y).

If the random variable X is absolutely continuous, we multiply both sides of the above equation by the density
fϑ(0)(x | y) and integrate with respect to x:∫

ℓ(ϑ | y, x)fϑ(0)(x | y)dx =
∫

ℓ(ϑ | y)fϑ(0)(x | y)dx +
∫

log fϑ(x | y)fϑ(0)(x | y)dx.

If the random variable X is discrete, we would instead multiply both sides by the probability Pϑ(0) (X = x | y) and
sum over all possible values of x. We observe that:∫

ℓ(ϑ | y, x)fϑ(0)(x | y)dx = Eϑ(0) [ℓ(ϑ | y, X) | y] = Qϑ(0)(ϑ),

∫
ℓ(ϑ | y)fϑ(0)(x | y)dx = ℓ(ϑ | y)

∫
fϑ(0)(x | y)dx = ℓ(ϑ | y).

Additionally, we define:

Hϑ(0)(ϑ) = −
∫

log fϑ(x | y)fϑ(0)(x | y)dx = −Eϑ(0) [log fϑ(X | y) | y] .

Therefore, we have succeeded in decomposing the observed-data likelihood into two parts:

ℓ(ϑ | y) = Qϑ(0)(ϑ) + Hϑ(0)(ϑ).

Making use of Jensen’s inequality, we can show that:

Hϑ(0)

(
ϑ(1)

)
− Hϑ(0)

(
ϑ(0)

)
= −Eϑ(0) [log fϑ(1)(X | y) | y] + Eϑ(0) [log fϑ(0)(X | y) | y]

= −Eϑ(0)

[
log fϑ(1)(X | y)

fϑ(0)(X | y)

∣∣∣∣ y] ⩾ − logEϑ(0)

[
fϑ(1)(X | y)
fϑ(0)(X | y)

∣∣∣∣ y]
= − log

∫
fϑ(1)(x | y)

�����
fϑ(0)(x | y) �����

fϑ(0)(x | y)dx = − log
∫

fϑ(1)(x | y)dx = − log 1 = 0.

This inequality is known as the fundamental inequality of the EM algorithm. If ϑ(0) is our current estimate of ϑ,
then this inequality shows that whatever our next estimate ϑ(1) is going to be, the function Hϑ(0)(·) is certainly
not going to drop below the current value Hϑ(0)

(
ϑ(0)). Since the value of the function H is guaranteed to increase

in each step of the EM algorithm, we can completely ignore it and solely focus on the function Q.

If we select any value ϑ(1) which increases the value of the function Qϑ(0)(·), i.e. Qϑ(0)
(
ϑ(1)) > Qϑ(0)

(
ϑ(0)), then we
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would get that ℓ
(

ϑ(1)
∣∣ y, x

)
> ℓ

(
ϑ(0)

∣∣ y, x
)
. By repeating this process, we produce a sequence of estimates which

increase the value of the observed-data likelihood at each step and finally converges to one of its local maxima.

Obviously, if we select the value ϑ(1) which exactly maximizes the function Qϑ(0)(·), i.e. ϑ(1) = argmaxϑ Qϑ(0)(ϑ),
then the algorithm will achieve the maximum possible rate of convergence. This is exactly the goal of the EM
algorithm. However, even if it’s not possible to directly maximize the function Qϑ(0)(·), the algorithm is still
guaranteed to converge to some local maximum of the observed-data likelihood, provided that we select a new
estimate which even slightly increases the value of the function Q at each step. For this reason, many variations of
the classical EM algorithm have been proposed over the years.

3 Application of the EM algorithm to Mixture Distributions

First, we take the log of the complete-data likelihood of the mixture model:

ℓ(ϑ | y, x) =
n∑

i=1

K∑
k=1

1{xi = k} [log pk + log fθk
(yi)] .

Next, we calculate the intermediate quantity of the EM algorithm:

Qϑ(0)(ϑ) = Eϑ(0) [ℓ(ϑ | y, X) | y] =
n∑

i=1

K∑
k=1

Eϑ(0) [1{Xi = k} | ��y1 , . . . , yi, . . . ,��yn ] [log pk + log fθk
(yi)]

=
n∑

i=1

K∑
k=1

Pϑ(0) (Xi = k | yi) [log pk + log fθk
(yi)] .

Therefore, the E-step of the EM algorithm for mixture distributions reduces to the calculation of the following
conditional probabilities:

wik = Pϑ (Xi = k | yi) .

These conditional probabilities are given by Bayes’ theorem:

wik ∝ Pp(Xi = k)fθ (yi | Xi = k) = pkfθk
(yi).

Additionally, we define the corresponding normalization constants:

ci(ϑ) =
K∑

ℓ=1
pℓfθℓ

(yi), i = 1, 2, . . . , n.

Returning to the formula for the observed-data likelihood of a mixture model, we observe that:

L(ϑ | y) =
n∏

i=1
ci(ϑ), ℓ(ϑ | y) = log L(ϑ | y) =

n∑
i=1

log ci(ϑ).

According to the theory of the EM algorithm, the value of the observed-data likelihood must increase at each step
of the algorithm.

The probability vectors and the observed-data likelihood, must always be calculated on the log scale for reasons of
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numerical stability. For this reason, we make use of the Log-Sum-Exp trick. For example, we define:

vik = log pk + log fθk
(yi), mi = max

k∈{1,...,K}
vik.

Then, we get that:

wik = evik−mi∑K
ℓ=1 eviℓ−mi

, log ci(ϑ) = mi + log
K∑

ℓ=1
eviℓ−mi .

Having calculated the conditional probabilities probabilities wik for ϑ = ϑ(0), we have completely specified the
intermediate quantity of the EM algorithm. Therefore, we can move on to the M-step, which depends on the choice
of PMFs or PDFs fθk

(·).

4 Application of the EM Algorithm to Mixtures of Poisson Distribu-
tions

Suppose that (Yi | Xi = k) ∼ Poisson(θk). According to the previous paragraph, we calculate that:

Qϑ(0)(ϑ) =
n∑

i=1

K∑
k=1

wik [log pk − θk + yi log θk − log (yi!)] .

First, we maximize the intermediate quantity of the EM algorithm with respect to the probability vector p, taking
into account the fact that

∑K
k=1 pk = 1. We define the following Lagrangian function:

L(p, λ) =
n∑

i=1

K∑
k=1

wik log pk − λ

(
K∑

k=1
pk − 1

)
.

By differentiating with respect to pk, we calculate that:

∂L(p, λ)
∂pk

= 1
pk

n∑
i=1

wik − λ ⇒ p
(1)
k = 1

λ

n∑
i=1

wik.

We observe that
∑K

k=1 wik = 1. By applying the constraint
∑K

k=1 p
(1)
k = 1, we calculate the value of λ as follows:

1 =
K∑

k=1
p

(1)
k = 1

λ

K∑
k=1

n∑
i=1

wik = 1
λ

n∑
i=1

K∑
k=1

wik = 1
λ

n∑
i=1

1 = n

λ
⇒ λ = n.

Therefore, we infer that:

p
(1)
k = 1

n

n∑
i=1

wik,

i.e. the new estimate of pk is the average conditional posterior probability of each observation belonging to group k.
Obviously, this maximization procedure remains the same for any finite mixture distribution.

Next, we differentiate the intermediate quantity of the EM algorithm with respect to θk:

∂Qϑ(0)(ϑ)
∂θk

=
n∑

i=1
wik

(
−1 + yi

θk

)
⇒ θ

(1)
k =

∑n
i=1 wikyi∑n

i=1 wik
,
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i.e. the new estimate of θk is the weighted average of all observations, where each observation is weighted by the
conditional probability of it belonging to group k.

Having calculated the MLE ϑ̂ via the EM algorithm, we can also calculate the probability distributions wik for
ϑ = ϑ̂. Then, we can calculate the maximum a posteriori estimates of the latent variables X1, . . . , Xn as follows:

X̂i = argmax
k∈{1,...,K}

wik, i = 1, 2, . . . , n.

loglikpoismix = function(Y, theta, p) {

n = length(Y)

K = length(theta)

w = matrix(0, n, K)

loglik = 0

for (i in 1:n) {

logw = log(p) + dpois(Y[i], theta, log = TRUE)

maximum = max(logw)

unnormalized = exp(logw - maximum)

c = sum(unnormalized)

w[i, ] = unnormalized/c

loglik = loglik + maximum + log(c)

}

return(list(w = w, loglik = loglik))

}

EMpoismix = function(Y, theta, p, tol = 1e-05) {

steps = 1

poismix = loglikpoismix(Y, theta, p)

w = poismix$w

loglik = poismix$loglik

err = Inf

while (err > tol) {

steps = steps + 1

p = colMeans(w)

theta = colMeans(w * Y)/p

poismix = loglikpoismix(Y, theta, p)

w = poismix$w

loglik[steps] = poismix$loglik

err = loglik[steps] - loglik[steps - 1]

}

return(list(theta = theta, p = p, w = w, loglik = loglik))

}

MLE = EMpoismix(Y, mean(Y) + sd(Y) * ((1 - K)/2):((K - 1)/2), rep(1, K)/K)
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print(MLE$theta)

## [1] 5.281834 15.588634 25.617278

print(MLE$p)

## [1] 0.2171178 0.5270992 0.2557829

XMAP = apply(MLE$w, 1, which.max)

plot(Y, col = XMAP, pch = 16, cex = 0.5)
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table(X, XMAP)

## XMAP

## X 1 2 3

## 1 191 13 0

## 2 24 447 28

## 3 0 86 211

plot(MLE$loglik[-1], type = "l", xlab = "Iteration", ylab = "Log-Likelihood",

lwd = 2)
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5 Application of the Gibbs Sampler to Mixture Distributions

Consider the conditionally conjugate Dirichlet(α) prior distribution for the probability vector p with probability
density function:

f(p) = Γ(Kα)
[Γ(α)]K

K∏
k=1

pα−1
k ∝

K∏
k=1

pα−1
k .

Then, the conditional posterior distribution of p is given by:

f(p | x) ∝ f(p)
n∏

i=1
P(Xi = xi | p) ∝

K∏
k=1

[
pα−1

k

n∏
i=1

p
1{xi=k}
k

]
=

K∏
k=1

pNk+α−1
k ,

i.e. p | x ∼ Dirichlet (N1 + α, N2 + α, . . . , NK + α), where Nk =
∑n

i=1 1{xi=k} for k = 1, 2, . . . , K. As a special
case, we can consider Jeffreys’ prior for p, which results for α = 0.5. In order to simulate from the conditional
posterior distribution of p, we can first simulate random variables Wk ∼ Gamma(Nk + α, 1) for k = 1, 2, . . . , K

and then let p = 1
W (W1, W2, . . . , WK), where W =

∑K
k=1 Wk.

Next, we consider the conditionally conjugate Gamma(β, λ) prior distribution for the parameter θk with probability
density function:

f(θk) = λβ

Γ(β)θβ−1
k e−λθk ∝ θβ−1

k e−λθk .

Then, the conditional posterior distribution of θk is given by:

f(θk | x, y) ∝ f(θk)
n∏

i=1
f(yi | xi, θk) ∝ θβ−1

k e−λθk

n∏
i=1

(
e−θk

θyi

k

yi!

)1{xi=k}

∝ θSk+β−1
k e−(Nk+λ)θk ,

i.e. θk | x, y ∼ Gamma(Sk + β, Nk + λ), where Sk =
∑n

i=1 yi1{xi=k} for k = 1, 2, . . . , K. As a special case, we can
consider the improper Jeffreys’ prior for θk, which is given by f(θk) ∝ θ−0.5

k and results for β = 0.5, λ = 0.

Finally, we know that the conditional posterior distribution of the latent variables Xi is given by:

P(Xi = k | yi, ϑ) = wik ∝ pkfθk
(yi).
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Since the likelihood of the mixture model and the prior distributions we’re considering treat the parameters which
correspond to different groups symmetrically, the phenomenon of label switching can sometimes appear in the
application of the MCMC algorithms to mixture distributions. In order to deal with this phenomenon, we can try
imposing some identifiability constraint such as θ1 < θ2 < · · · < θK at each step of the MCMC algorithm.

MCMCpoismix = function(Y, theta0, p0, alpha, beta, lambda, niter, nburn) {

K = length(theta)

theta = matrix(0, niter, K)

p = matrix(0, niter, K)

X = matrix(0, niter, n)

theta[1, ] = theta0

p[1, ] = p0

w = loglikpoismix(Y, theta[1, ], p[1, ])$w

X[1, ] = apply(w, 1, function(x) {

sample(K, 1, prob = x)

})

for (j in 2:niter) {

x = factor(X[j - 1, ], levels = 1:K)

N = table(x)

p[j, ] = rgamma(K, N + alpha)

p[j, ] = p[j, ]/sum(p[j, ])

S = aggregate(Y ~ x, FUN = sum, drop = FALSE)[, 2]

S[is.na(S)] = 0

theta[j, ] = rgamma(K, S + beta, N + lambda)

w = loglikpoismix(Y, theta[j, ], p[j, ])$w

X[j, ] = apply(w, 1, function(x) {

sample(K, 1, prob = x)

})

I = order(theta[j, ])

theta[j, ] = theta[j, I]

p[j, ] = p[j, I]

X[j, ] = I[X[j, ]]

}

return(list(theta = theta[-(1:nburn), ], p = p[-(1:nburn), ], X = X[-(1:nburn),

]))

}

posterior = MCMCpoismix(Y, mean(Y) + sd(Y) * ((1 - K)/2):((K - 1)/2), rep(1,

K)/K, 0.5, 0.5, 0, 2000, 1000)

par(mfrow = c(1, 3))

hist(posterior$theta[, 1], "FD", freq = FALSE, main = NA, xlab = expression(theta[1]))

abline(v = theta[1], col = 2, lty = 2)

hist(posterior$theta[, 2], "FD", freq = FALSE, main = NA, xlab = expression(theta[2]))

abline(v = theta[2], col = 2, lty = 2)
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hist(posterior$theta[, 3], "FD", freq = FALSE, main = NA, xlab = expression(theta[3]))

abline(v = theta[3], col = 2, lty = 2)
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hist(posterior$p[, 1], "FD", freq = FALSE, main = NA, xlab = expression(p[1]))

abline(v = p[1], col = 2, lty = 2)

hist(posterior$p[, 2], "FD", freq = FALSE, main = NA, xlab = expression(p[2]))

abline(v = p[2], col = 2, lty = 2)

hist(posterior$p[, 3], "FD", freq = FALSE, main = NA, xlab = expression(p[3]))

abline(v = p[3], col = 2, lty = 2)
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XMAP = apply(posterior$X, 2, function(x) {

which.max(table(factor(x, levels = 1:K)))
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})

plot(Y, col = XMAP, pch = 16, cex = 0.5)
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table(X, XMAP)

## XMAP

## X 1 2 3

## 1 191 13 0

## 2 24 447 28

## 3 0 86 211

6 Application of Generalized Likelihood Ratio Testing to Mixture
Distributions

Suppose that we want to compare two nested mixture models with different numbers of groups. Consider the null
model M0 with K − 1 groups and the alternative model M1 with K groups. We calculate the MLE ϑ̂0 of the null
model M0 and the MLE ϑ̂1 of the alternative model M1 by use of the EM algorithm. Then, we get the observed
value of the generalized likelihood ratio statistic as follows:

LRobs = −2
[
ℓ
(

ϑ̂0 | y
)

− ℓ
(

ϑ̂1 | y
)]

.

We generally know that the generalized likelihood ratio statistic follows the χ2
ν distribution under the null model

M0, where ν is the number of restrictions that the null model M0 sets upon the alternative model M1. However,
in the case of nested mixture models with different numbers of groups, the number of restrictions ν is not uniquely
defined, so the regularity conditions of Wilks’ theorem aren’t satisfied.

For this reason, we may choose to make use of the parametric bootstrap method in order to estimate the
distribution of the generalized likelihood ratio statistic under the null model M0. In other words, we simulate
samples y(1), y(2), . . . , y(nboot) from the null model M0 with parameter vector ϑ̂0. Next, we calculate the MLE ϑ̂

(j)
0

of the null model M0 and the MLE ϑ̂
(j)
1 of the alternative model M1 by use of the EM algorithm based on the
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sample y(j) for j = 1, 2, . . . , nboot. Finally, we calculate the value LRboot
j of the bootstrapped generalized likelihood

ratio statistic, in the same way we calculated the observed value LRobs. Then, we can estimate the p-value of the
generalized likelihood ratio test as follows:

p-value =
1 +

∑nboot
j=1 1{LRboot

j
>LRobs}

1 + nboot
.

LRpoismix = function(n, theta, p, LRobs, nboot, tol = 1e-05) {

K = length(theta)

LRboot = numeric(nboot)

for (i in 1:nboot) {

Y = rpoismix(n, theta, p)$Y

loglik0 = EMpoismix(Y, mean(Y) + sd(Y) * ((1 - K)/2):((K - 1)/2), rep(1,

K)/K, tol)$loglik

loglik1 = EMpoismix(Y, mean(Y) + sd(Y) * (-K/2):(K/2), rep(1, K + 1)/(K +

1), tol)$loglik

LRboot[i] = -2 * (tail(loglik0, 1) - tail(loglik1, 1))

}

pval = (1 + sum(LRboot > LRobs))/(1 + nboot)

return(pval)

}

MLE0 = EMpoismix(Y, mean(Y) + sd(Y) * ((1 - K/2):(K/2 - 1)), rep(1, K - 1)/(K -

1))

LRobs = -2 * (tail(MLE0$loglik, 1) - tail(MLE$loglik, 1))

print(LRobs)

## [1] 257.3839

LRpoismix(n, MLE0$theta, MLE0$p, LRobs, 100)

## [1] 0.00990099

7 Hidden Markov Models (HMMs)

Let {Xi} be a time-homogeneous discrete-time Markov chain with initial distribution pk = P(X1 = k) and first-order
transition probabilities pk,ℓ = P (Xi+1 = ℓ | Xi = k) for k, ℓ = 1, 2, . . . , K.

Consider a stochastic process {Yi}. Suppose that the stochastic process {Yi} is conditionally independent given
the Markov chain {Xi}, that the conditional distribution of the random variable Yi given the Markov chain {Xi}
solely depends on the random variable Xi and that (Yi | Xi = k) ∼ fθk

(·). In other words,

fθ (y1, . . . , yn | X1 = x1, . . . , Xn = xn) =
n∏

i=1
fθ (yi | X1 = x1, . . . , Xn = xn)

=
n∏

i=1
fθ (yi | Xi = xi) =

n∏
i=1

fθxi
(yi).
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Then, the bivariate stochastic process {(Xi, Yi)} is a time-homogeneous discrete-time hidden Markov model with
finite state-space.

The Markov chain {Xi} is latent, i.e. non-observable. We insert it in order to explain the serial autocorrelation of
the observable stochastic process {Yi}. A graphical representation of the dependence structure of a HMM is shown
in the following figure.

X1 X2 XiHidden

Y1 Y2 YiObservable

· · · · · ·

· · · · · ·

In contrast with the Markov chain {Xi} whose every random variable Xi only depends on the value of the
immediately preceding random variable Xi−1, every random variable Yi of the stochastic process {Yi} depends on
the values of all preceding random variables Y1, . . . , Yi−1. In other words, even though the stochastic process {Yi}
is conditionally independent given the Markov chain {Xi}, it displays “infinite memory” without this conditioning.

Conditional independence plays a central role in all calculations pertaining to HMMs. We say that a random variable
X and a random variable Y are conditionally independent given a random variable Z, denoted by (X ⊥⊥ Y ) | Z, if
the conditional distribution of X given Z and the conditional distribution of Y given Z are independent.

We can easily infer the conditional independence from the graphical representation of the dependence structure of
a HMM. More specifically, if we condition on a random variable Z which “cuts” the path between the random
variables X and Y , then (X ⊥⊥ Y ) | Z. For example,

((Y1, . . . , Yi) ⊥⊥ (Yi+1, . . . , Yn)) | Xi,

((Y1, . . . , Yi) ⊥⊥ Xi+1) | Xi,

((Yi, . . . , Yn) ⊥⊥ Xi−1) | Xi.

Let y1, . . . , yn be a sample from a stochastic process. We insert the hidden Markov chain {Xi}. The complete-data
likelihood, i.e. the joint likelihood of the observed variables yi and the latent variables xi, for parameter vector
ϑ = (p1, . . . , pK , p1,1, . . . , pK,K , θ1, . . . , θK) is given by:

L(ϑ | y, x) = fϑ(x, y) = Pϑ(X = x)fϑ(y | x)

= Pp (X1 = x1) ·
n∏

i=2
Pp (Xi = xi | Xi−1 = xi−1) ·

n∏
i=1

fθ (yi | Xi = xi)

= px1 ·
n∏

i=2
pxi−1,xi ·

n∏
i=1

fθxi
(yi)

=
K∏

k=1
p
1{xi=k}
k ·

n∏
i=2

K∏
k=1

K∏
ℓ=1

p
1{xi−1=k,xi=ℓ}
k,ℓ ·

n∏
i=1

K∏
k=1

fθk
(yi)1{xi=k}.
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In contrast, the observed-data likelihood is given by the chain rule as follows:

L(ϑ | y) = fϑ(y1)
n∏

i=2
fϑ(yi | y1, . . . , yi−1)

=
[

K∑
k=1

Pp (X1 = k) fθ (y1 | X1 = k)
]

×
n∏

i=2

[
K∑

k=1
Pϑ (Xi = k | y1, . . . , yi−1) fθ (yi | ((((((y1, . . . , yi−1 , Xi = k)

]

=
[

K∑
k=1

pkfθk
(y1)

]
n∏

i=2

[
K∑

k=1
Pϑ (Xi = k | y1, . . . , yi−1) fθk

(yi)
]

.

Once again, it’s impossible to find a closed form solution to the maximization problem of this observed-data
likelihood.

In contrast with the straightforward calculation of the observed-data likelihood in mixture distributions for given
parameter values, the calculation of the observed-data likelihood in HMMs requires the calculation of the conditional
probabilities ϕi|i−1(k) = Pϑ (Xi = k | y1, . . . , yi−1). These conditional probabilities are called predictive, since
they predict the current state of the hidden Markov chain given the values of all preceding observable variables.
The calculation of these probabilities requires a recursive scheme. Such a recursive scheme is involved in every
estimation method for the parameters of a HMM, so the calculation of the observed-data likelihood is a direct
byproduct of the estimation process.

rpoisHMM = function(n, theta, p, P) {

K = length(theta)

X = numeric(n)

X[1] = sample(K, 1, prob = p)

for (i in 2:n) {

X[i] = sample(K, 1, prob = P[X[i - 1], ])

}

Y = rpois(n, theta[X])

return(list(Y = Y, X = X))

}

n = 1000

K = 3

theta = c(5, 15, 25)

p = c(1, 0, 0)

P = matrix(c(0.5, 0.3, 0.2, 0.3, 0.6, 0.1, 0.2, 0.1, 0.7), 3)

HMM = rpoisHMM(n, theta, p, P)

Y = HMM$Y

X = HMM$X

plot(Y, col = X, pch = 16, cex = 0.5)
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8 Application of the EM Algorithm to HMMs

First, we take the log of the complete-data likelihood of the HMM:

ℓ(ϑ | y, x) =
K∑

k=1
1{x1 = k} log pk +

n∑
i=2

K∑
k=1

K∑
ℓ=1

1{xi−1 = k, xi = ℓ} log pk,ℓ

+
n∑

i=1

K∑
k=1

1{xi = k} log fθk
(yi).

Next, we calculate the intermediate quantity of the EM algorithm:

Qϑ(0)(ϑ) =
K∑

k=1
Pϑ(0) (X1 = k | y1, . . . , yn) log pk +

n∑
i=2

K∑
k=1

K∑
ℓ=1

Pϑ(0) (Xi−1 = k, Xi = ℓ | y1, . . . , yn) log pk,ℓ

+
n∑

i=1

K∑
k=1

Pϑ(0) (Xi = k | y1, . . . , yn) log fθk
(yi).

Therefore, the E-step of the EM algorithm in HMMs reduces to the calculation of the conditional probabilities
ϕi|n(k) = Pϑ (Xi = k | y1, . . . , yn) and ϕi−1,i|n(k, ℓ) = Pϑ (Xi−1 = k, Xi = ℓ | y1, . . . , yn). These conditional prob-
abilities are called smoothing, because they smooth out the noise contained in the entire sample to infer the
distribution of the hidden Markov chain. These conditional probabilities cannot be directly calculated though use of
Bayes’ theorem - they require a recursive scheme, which also includes the calculation of the predictive probabilities.

9 Forward-Backward Algorithm

The Forward-Backward algorithm aims at the calculation of the univariate smoothing distributions ϕi|n(·) and
the bivariate smoothing distributions ϕi−1,i|n(·, ·), so it’s incorporated in the E-step of the EM algorithm for the
parameter estimation of a HMM. It constitutes of two consecutive recursive schemes.

The first recursive scheme aims at the calculation of the conditional probabilities ϕi|i(k) = Pϑ (Xi = k | y1, . . . , yi).
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These conditional probabilities are called filtering, because they filter the values of the currently observed variables
to infer the distribution of the current state of the hidden Markov chain. This recursive scheme filters the entire
observable stochastic process from start to finish. For this reason, it’s called forward filtering.

The second recursive scheme makes use of the filtering distributions ϕi|i(·) for the calculation of the smoothing
probabilities. This recursive scheme smooths out the entire observable stochastic process from finish to start. For
this reason, it’s called backward smoothing.

Forward Filtering

Our goal is to calculate the filtering distributions ϕi|i(·) for i = 1, 2, . . . , n. By applying Bayes’ theorem, we get
that:

ϕ1|1(k) = Pϑ (X1 = k | y1)

∝ Pp (X1 = k) fθ (y1 | X1 = k)

= pkfθk
(y1),

ϕi|i(k) = Pϑ (Xi = k | y1, . . . , yi−1, yi)

∝ Pϑ (Xi = k | y1, . . . , yi−1) fθ (yi | ((((((y1, . . . , yi−1 , Xi = k)

= ϕi|i−1(k)fθk
(yi), i = 2, 3, . . . , n.

We see that the calculation of each filtering distribution for i = 2, 3, . . . , n requires the calculation of the current
predictive distribution ϕi|i−1(·). By applying the law of total probability, we get that:

ϕi|i−1(k) = Pϑ (Xi = k | y1, . . . , yi−1)

=
K∑

ℓ=1
Pϑ (Xi−1 = ℓ | y1, . . . , yi−1)Pp (Xi = k | Xi−1 = ℓ,((((((y1, . . . , yi−1 )︸ ︷︷ ︸

((Y1,...,Yi−1)⊥⊥Xi)|Xi−1

=
K∑

ℓ=1
ϕi−1|i−1(ℓ)pℓ,k, i = 2, 3, . . . , n.

We see that the calculation of each predictive distribution ϕi|i−1(·) requires the calculation of the immediately
preceding filtering distribution ϕi−1|i−1(·). Therefore, we get a recursive scheme according to which we alternately
calculate the filtering and predictive distributions of the hidden Markov chain from start to finish.

Furthermore, we define the normalization constants of the filtering distributions:

c1(ϑ) =
K∑

ℓ=1
pℓfθℓ

(y1),

ci(ϑ) =
K∑

ℓ=1
ϕi|i−1(ℓ)fθℓ

(yi), i = 2, 3, . . . , n.

Returning to the formula for the observed-data likelihood of a HMM, we observe that:

L(ϑ | y) = c1(ϑ) ·
n∏

i=2
ci(ϑ) =

n∏
i=1

ci(ϑ), ℓ(ϑ | y) = log L(ϑ | y) =
n∑

i=1
log ci(ϑ).

Therefore, as a byproduct of the forward filtering algorithm, we can calculate the observed-data likelihood of the
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HMM for the current estimate of ϑ. According to the theory of the EM algorithm, the value of the observed-data
likelihood must increase at each step of the algorithm.

As always, the filtering distributions and observed-data likelihood, must be calculated on the log scale for reasons
of numerical stability. For this reason, we make use of the Log-Sum-Exp trick. For example, we define:

vk = log pk + log fθk
(y1), m1 = max

k∈{1,...,K}
vk.

Then, we get that:

ϕ1|1(k) = evk−m1∑K
ℓ=1 evℓ−m1

, log c1(ϑ) = m1 + log
K∑

ℓ=1
evℓ−m1 .

We apply the same logic to the rest of the filtering distributions. The recursive forward filtering scheme is
summarized below.

Algorithm 1 Forward Filtering

Input: Observations y1, . . . , yn and current estimate ϑ.

1: Calculate the normalization constant log c1(ϑ).

2: Calculate the filtering distribution ϕ1|1(·).

3: For i = 2, 3, . . . , n, calculate:

i: the predictive distribution ϕi|i−1(·),

ii: the normalization constant log ci(ϑ),

iii: the filtering distribution ϕi|i(·).

4: Calculate the observed-data log-likelihood ℓ(ϑ | y).

Output: Filtering distributions ϕi|i(·) and observed-data log-likelihood ℓ(ϑ | y).

Backward Smoothing

Our goal is to calculate the smoothing distributions ϕi|n(·) and ϕi−1,i|n(·, ·). First, we define the following backward
variables:

bi(k) = fϑ (yi+1, . . . , yn | Xi = k) , i = 1, 2, . . . , n − 1.

By applying Bayes’ theorem, we get that:

ϕi|n(k) = Pϑ (Xi = k | y1, . . . , yi, yi+1, . . . , yn)

∝ Pϑ (Xi = k | y1, . . . , yi) fϑ (yi+1, . . . , yn | (((((y1, . . . , yi , Xi = k)︸ ︷︷ ︸
((Y1,...,Yi)⊥⊥(Yi+1,...,Yn))|Xi

= ϕi|i(k)bi(k), i = 1, 2, . . . , n − 1,
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ϕi−1,i|n(k, ℓ) = Pϑ (Xi−1 = k, Xi = ℓ | y1, . . . , yi−1, yi, . . . , yn)

∝ Pϑ (Xi−1 = k, Xi = ℓ | y1, . . . , yi−1)︸ ︷︷ ︸
chain rule

fϑ (yi, . . . , yn | ((((((y1, . . . , yi−1 ,�����Xi−1 = k , Xi = ℓ)︸ ︷︷ ︸
((Yi,...,Yn)⊥⊥Xi−1)|Xi

= Pϑ (Xi−1 = k | y1, . . . , yi−1)Pp (Xi = ℓ | Xi−1 = k,((((((y1, . . . , yi−1 )︸ ︷︷ ︸
((Y1,...,Yi−1)⊥⊥Xi)|Xi−1

× fθ (yi | Xi = ℓ) fϑ (yi+1, . . . , yn | Xi = ℓ)︸ ︷︷ ︸
(Yi⊥⊥(Yi+1,...,Yn))|Xi

= ϕi−1|i−1(k)pk,ℓfθℓ
(yi)bi(ℓ), i = 2, 3, . . . , n − 1,

ϕn−1,n|n(k, ℓ) = Pϑ (Xn−1 = k, Xn = ℓ | y1, . . . , yn−1, yn)

∝ Pϑ (Xn−1 = k, Xn = ℓ | y1, . . . , yn−1)︸ ︷︷ ︸
chain rule

fθ (yn | ((((((y1, . . . , yn−1 ,�����Xn−1 = k , Xn = ℓ)

= Pϑ (Xn−1 = k | y1, . . . , yn−1)Pp (Xn = ℓ | Xn−1 = k,((((((y1, . . . , yn−1 )︸ ︷︷ ︸
((Y1,...,Yn−1)⊥⊥Xn)|Xn−1

fθℓ
(yn)

= ϕn−1|n−1(k)pk,ℓfθℓ
(yn).

We see that the calculation of all smoothing distributions is fully determined by the knowledge of the filtering
distributions and the current backward variables. The backward variables are recursively calculated through the
law of total probability:

bi(k) = fϑ (yi+1, . . . , yn | Xi = k)

=
K∑

ℓ=1
Pp (Xi+1 = ℓ | Xi = k) fϑ (yi+1, . . . , yn | ����Xi = k , Xi+1 = ℓ)︸ ︷︷ ︸

((Yi+1,...,Yn)⊥⊥Xi)|Xi+1

=
K∑

ℓ=1
pk,ℓ fθ (yi+1 | Xi+1 = ℓ) fϑ (yi+2, . . . , yn | Xi+1 = ℓ)︸ ︷︷ ︸

(Yi+1⊥⊥(Yi+2,...,Yn))|Xi+1

=
K∑

ℓ=1
pk,ℓfθℓ

(yi+1)bi+1(ℓ), i = 1, 2, . . . , n − 2,

bn−1(k) = fϑ (yn | Xn−1 = k)

=
K∑

ℓ=1
Pp (Xn = ℓ | Xn−1 = k) fθ (yn | �����Xn−1 = k , Xn = ℓ)

=
K∑

ℓ=1
pk,ℓfθℓ

(yn).

Therefore, we get a recursive scheme according to which we alternately calculate the smoothing distributions and
the backward variables of the hidden Markov chain from finish to start. The final marginal smoothing distribution
coincides with the final filtering distribution, which has already been calculated. The rest of the smoothing
distributions are calculated using the Log-Sum-Exp trick in the same way as the filtering distributions. The
backward smoothing recursive scheme is summarized below.
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Algorithm 2 Backward Smoothing

Input: Observations y1, . . . , yn, current estimate ϑ and filtering distributions ϕi|i(·).

1: Calculate the bivariate smoothing distribution ϕn−1,n|n(·, ·).

2: Calculate the backward variables bn−1(·).

3: For i = n − 1, n − 2, . . . , 2, calculate:

i: the marginal smoothing distribution ϕi|n(·),

ii: the bivariate smoothing distribution ϕi−1,i|n(·, ·),

iii: the backward variables bi−1(·).

4: Calculate the marginal smoothing distribution ϕ1|n(·).

Output: Smoothing distributions ϕi|n(·) and ϕi−1,i|n(·, ·).

Markovian Backward Smoothing

Markovian backward smoothing is an alternative recursive scheme which aims at the calculation of the smoothing
distributions ϕi|n(·) and ϕi−1,i|n(·, ·). In contrast with the backward smoothing scheme, it can lead to the calculation
of the joint smoothing distribution of the entire hidden Markov chain. This enables the design of efficient MCMC
algorithms for the estimation of the joint posterior distribution of the parameters of a HMM. In place of the
backward variables, it makes use of the following backward transition probabilities:

Bi(k, ℓ) = Pϑ (Xi = k | Xi+1 = ℓ, y1, . . . , yi) , i = 1, 2, . . . , n − 1.

We observe that
∑K

k=1 Bi(k, ℓ) = 1. Be applying the chain rule, we calculate that:

ϕi−1,i|n(k, ℓ) = Pϑ (Xi−1 = k, Xi = ℓ | y1, . . . , yn)

= Pϑ (Xi = ℓ | y1, . . . , yn)Pϑ (Xi−1 = k | Xi = ℓ, y1, . . . , yi−1,(((((yi, . . . , yn )︸ ︷︷ ︸
((Yi,...,Yn)⊥⊥Xi−1|Xi)

= ϕi|n(ℓ)Bi−1(k, ℓ), i = 2, 3, . . . , n.

We see that the calculation of each bivariate smoothing distribution is fully determined by the calculation of the
immediately preceding marginal smoothing distribution and the current backward transition probabilities. Next,
by applying the law of total probability, we get that:

ϕi|n(k) = Pϑ (Xi = k | y1, . . . , yn)

=
K∑

ℓ=1
Pϑ (Xi = k, Xi+1 = ℓ | y1, . . . , yn)

=
K∑

ℓ=1
ϕi,i+1(k, ℓ), i = 1, 2, . . . , n − 1.

We see that the calculation of each marginal smoothing distribution is fully determined by the calculation of the
current bivariate smoothing distribution. The backward transition probabilities are calculated according to Bayes’
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theorem as follows:

Bi(k, ℓ) = Pϑ (Xi = k | Xi+1 = ℓ, y1, . . . , yi)

∝ Pϑ (Xi = k | y1, . . . , yi)Pp (Xi+1 = ℓ | Xi = k,(((((y1, . . . , yi )︸ ︷︷ ︸
((Y1,...,Yi)⊥⊥Xi+1)|Xi

= ϕi|i(k)pk,ℓ, i = 1, 2, . . . , n − 1.

We see that the calculation of the backward transition probabilities is fully determined by the knowledge of
the corresponding filtering distribution. Therefore, we get a recursive scheme according to which we alternately
calculate the backward transition probabilities and the smoothing distributions of the hidden Markov chain from
finish to start.

Finally, we can decompose the joint smoothing distribution of the entire hidden Markov chain by use of the chain
rule:

ϕ1,...,n|n(x1, . . . , xn) = Pϑ(X1 = x1, . . . , Xn = xn | y1, . . . , yn)

= Pϑ (Xn = xn | y1, . . . , yn)

×
n−1∏
i=1

Pϑ (Xi = xi | Xi+1 = xi+1,((((((Xi+2 = xi+2 , . . . ,�����
Xn = xn , y1, . . . , yi,((((((yi+1, . . . , yn )︸ ︷︷ ︸

((Xi+2,...,Xn))⊥⊥Xi|Xi+1

((Yi+1,...,Yn)⊥⊥Xi)|Xi+1

= ϕn|n(xn)
n−1∏
i=1

Bi (xi, xi+1) .

The joint smoothing distribution is essentially the conditional posterior distribution of the entire hidden Markov
chain. We observe that the conditional posterior distribution of the hidden Markov chain preserves the Markov
property, but is no longer time-homogeneous. The backward probabilities Bi(·, ·) essentially determine the transition
probability matrix of the conditional posterior distribution of the reverse Markov chain during its (n−i)-th transition.
We can easily see that this transition probability matrix is different at every transition of the Markov chain.

The backward probabilities are calculated using the Log-Sum-Exp trick. We define:

vi(k, ℓ) = log ϕi|i(k) + log pk,ℓ, mi(ℓ) = max
k∈{1,...,K}

vi(k, ℓ).

Then, we get that:

Bi(k, ℓ) = evi(k,ℓ)−mi(ℓ)∑K
j=1 evi(j,ℓ)−mi(ℓ)

.

The Markovian backward smoothing recursive scheme is summarized on the next page.

10 Baum-Welch Algorithm

We start with some initial estimate ϑ(0). In the E-step of the EM algorithm, we implement the Forward-Backward
algorithm for ϑ = ϑ(0) and get the smoothing distributions ϕi|n(·), ϕi−1,i|n(·, ·). The EM algorithm which
incorporates the Forward-Backward algorithm for the calculation of the smoothing distributions is called the
Baum-Welch algorithm. In this way, we have fully determined the intermediate quantity of the EM algorithm and
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Algorithm 3 Markovian Backward Smoothing

Input: Current estimate ϑ and filtering distributions ϕi|i(·).

1: For i = n − 1, n − 2, . . . , 1, calculate:

i: the backward transition probabilities Bi(·, ·),

ii: the bivariate smoothing distribution ϕi,i+1|n(·, ·),

iii: the marginal smoothing distribution ϕi|n(·).

Output: Smoothing distributions ϕi|n(·) and ϕi,i+1|n(·, ·).

we can proceed with the M-step.

Suppose that (Yi | Xi = k) ∼ Poisson(θk). In this particular case, we calculate that:

Qϑ(0)(ϑ) =
K∑

k=1
ϕ1|n(k) log pk +

n∑
i=2

K∑
k=1

K∑
ℓ=1

ϕi−1,i|n(k, ℓ) log pk,ℓ

+
n∑

i=1

K∑
k=1

ϕi|n(k) [−θk + yi log θk − log (yi!)] .

First, we note that the estimation of the initial distribution of the hidden Markov chain is solely based on the
conditional posterior distribution of X1. Therefore, there is no hope of obtaining a consistent estimate of the initial
distribution based on only one sequence of observations y1, . . . , yn. Unless we have some prior information about
the initial distribution, the most usual strategy is to consider it known to be the discrete uniform distribution on
the state-space S = {1, 2, . . . , K} of the hidden Markov chain.

We know that
∑K

ℓ=1 pk,ℓ = 1. Therefore, we maximize the intermediate quantity of the EM algorithm with respect
to each row of the transition probability matrix separately. We define the following Lagrangian function:

L(pk, λk) =
n∑

i=2

K∑
ℓ=1

ϕi−1,i|n(k, ℓ) log pk,ℓ − λk

(
K∑

ℓ=1
pk,ℓ − 1

)
.

By differentiating with respect to pk,ℓ, we calculate that:

∂L(pk, λk)
∂pk,ℓ

= 1
pk,ℓ

n∑
i=2

ϕi−1,i|n(k, ℓ) − λk ⇒ p
(1)
k,ℓ = 1

λk

n∑
i=2

ϕi−1,i|n(k, ℓ) = 1
λk

n−1∑
i=1

ϕi,i+1|n(k, ℓ).

We observe that
∑K

ℓ=1 ϕi,i+1|n(k, ℓ) = ϕi|n(k). By making use of the constraint
∑K

ℓ=1 p
(1)
k,ℓ = 1, we calculate the

value of the Lagrange multiplier λk:

1 =
K∑

ℓ=1
p

(1)
k,ℓ = 1

λk

K∑
ℓ=1

n−1∑
i=1

ϕi,i+1|n(k, ℓ) = 1
λk

n−1∑
i=1

K∑
ℓ=1

ϕi,i+1|n(k, ℓ) = 1
λk

n−1∑
i=1

ϕi|n(k) ⇒ λk =
n−1∑
i=1

ϕi|n(k).

Therefore, we infer that:

p
(1)
k,ℓ =

∑n−1
i=1 ϕi,i+1|n(k, ℓ)∑n−1

i=1 ϕi|n(k)
,

i.e. the new estimate of pk,ℓ is the weighted average of the conditional posterior probabilities of transitioning from

22



state k to state ℓ, where each probability is weighted by the conditional posterior probability of being in state k.
Obviously, the same maximization holds for any finite state-space HMM.

Next, we differentiate the intermediate quantity of the EM algorithm with respect to θk:

∂Qϑ(0)(ϑ)
∂θk

=
n∑

i=1
ϕi|n(k)

(
−1 + yi

θk

)
⇒ θ

(1)
k =

∑n
i=1 ϕi|n(k)yi∑n

i=1 ϕi|n(k)
,

i.e. the new estimate of θk is the weighted average of all observations, where each observation is weighted by the
conditional posterior probability of it originating from state k. We can see that the estimation of the unknown
parameters of the distributions fθk

(·) remains the same whether we are working on a mixture distribution or a
HMM.

forward = function(Y, theta, p, P) {

n = length(Y)

K = length(theta)

filter = matrix(0, n, K)

logfilter = log(p[p > 0]) + dpois(Y[1], theta[p > 0], log = TRUE)

maximum = max(logfilter)

unnormalized = exp(logfilter - maximum)

c = sum(unnormalized)

filter[1, p > 0] = unnormalized/c

loglik = maximum + log(c)

for (i in 2:n) {

predict = colSums(filter[i - 1, ] * P)

logfilter = log(predict) + dpois(Y[i], theta, log = TRUE)

maximum = max(logfilter)

unnormalized = exp(logfilter - maximum)

c = sum(unnormalized)

filter[i, ] = unnormalized/c

loglik = loglik + maximum + log(c)

}

return(list(filter = filter, loglik = loglik))

}

backward = function(filter, P) {

n = dim(filter)[1]

K = dim(P)[1]

bivariate = array(0, c(K, K, n - 1))

marginal = matrix(0, n, K)

marginal[n, ] = filter[n, ]

for (i in (n - 1):1) {

for (k in 1:K) {

logB = log(filter[i, ]) + log(P[, k])

unnormalized = exp(logB - max(logB))
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B = unnormalized/sum(unnormalized)

bivariate[, k, i] = marginal[i + 1, k] * B

}

marginal[i, ] = rowSums(bivariate[, , i])

}

return(list(marginal = marginal, bivariate = bivariate))

}

EMpoisHMM = function(Y, theta, p, P, tol = 1e-05) {

steps = 1

f = forward(Y, theta, p, P)

loglik = f$loglik

b = backward(f$filter, P)

marginal = b$marginal

bivariate = b$bivariate

err = Inf

while (err > tol) {

steps = steps + 1

P = apply(bivariate, 1:2, sum)

P = P/rowSums(P)

theta = colSums(marginal * Y)/colSums(marginal)

f = forward(Y, theta, p, P)

loglik[steps] = f$loglik

b = backward(f$filter, P)

marginal = b$marginal

bivariate = b$bivariate

err = loglik[steps] - loglik[steps - 1]

}

return(list(theta = theta, P = P, marginal = marginal, loglik = loglik))

}

MLE = EMpoisHMM(Y, mean(Y) + sd(Y) * ((1 - K)/2):((K - 1)/2), p, matrix(1, K,

K)/K)

print(MLE$theta)

## [1] 4.928938 15.160789 24.837596

print(MLE$P)

## [,1] [,2] [,3]

## [1,] 0.5733331 0.2123264 0.21434048

## [2,] 0.2633581 0.6434395 0.09320237

## [3,] 0.2191574 0.1412264 0.63961621
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plot(MLE$loglik[-1], type = "l", xlab = "Iteration", ylab = "Log-Likelihood",

lwd = 2)
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11 Latent State Decoding

Having estimated all unknown parameters of a HMM by use of the Baum-Welch or some other algorithm, we can
also estimate the hidden states x1, . . . , xn from which the observations y1, . . . , yn have originated. This process is
called decoding of the hidden Markov chain. The decoding can be either global or local.

Global Decoding

Global decoding aims at the maximization of the conditional posterior distribution of the entire hidden Markov
chain given the entire observable sequence, i.e. the joint smoothing distribution ϕ1,...,n|n(·, . . . , ·). Since this is an
n-dimensional distribution, its maximization isn’t directly feasible - it requires some algorithm which implements
the principle of dynamic programming.

The Viterbi algorithm is based on the principle of dynamic programming and is used in the global decoding of
the hidden Markov chain. We want to define the optimal value function and to formulate the Bellman optimality
equations. By applying Bayes’ theorem, we observe that:

ϕ1,...,i|i(x1, . . . , xi) = Pϑ (X1 = x1, . . . , Xi = xi | y1, . . . , yi)

= Pϑ (X1 = x1, . . . , Xi = xi) fθ (y1, . . . , yi | X1 = x1, . . . , Xi = xi)
fϑ(y1, . . . , yi)

= 1
L (ϑ | y1, . . . , yi)

· ax1 ·
i∏

j=2
pxj−1,xj

·
i∏

j=1
fθxj

(yj)

= L (ϑ | y1, . . . , yi−1)
L (ϑ | y1, . . . , yi)

·
pxi−1,xi

fθxi
(yi)

L (ϑ | y1, . . . , yi−1) · ax1 ·
i−1∏
j=2

pxj−1,xj
·

i−1∏
j=1

fθxj
(yj)

= L (ϑ | y1, . . . , yi−1)
L (ϑ | y1, . . . , yi)

· ϕ1,...,i−1|i−1(x1, . . . , xi−1) · pxi−1,xi
fθxi

(yi), i = 2, 3, . . . , n.
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Therefore, we define the optimal value function on the log scale as follows:

vi(k) = ℓ (ϑ | y1, . . . , yi) + max
(x1,...,xi−1)∈Si−1

log ϕ1,...,i|i(x1, . . . , xi−1, k), i = 1, 2, . . . , n.

This represents the maximal conditional probability of a sequence of hidden states which arrives at state k during
time period i given all the observations up to time period i. First, we observe that:

v1(k) = ℓ(ϑ | y1) + log ϕ1|1(k)

= log [fϑ(y1)Pϑ (X1 = k | y1)]

= log [Pp (X1 = k) fθ (y1 | X1 = x1)]

= log pk + log fθk
(y1).

By substituting, we get the Bellman optimality equations:

vi(k) = (((((((
ℓ (ϑ | y1, . . . , yi) + ℓ (ϑ | y1, . . . , yi−1) − (((((((

ℓ (ϑ | y1, . . . , yi)

+ max
(x1,...,xi−1)∈Si−1

[
log ϕ1,...,i−1|i−1(x1, . . . , xi−1) + log pxi−1,k

]
+ log fθk

(yi)

= log fθk
(yi) + ℓ (ϑ | y1, . . . , yi−1)

+ max
ℓ∈{1,...,K}

[
max

(x1,...,xi−2)∈Si−2
log ϕ1,...,i−1|i−1(x1, . . . , xi−2, ℓ) + log pℓ,k

]
= log fθk

(yi) + max
ℓ∈{1,...,K}

[vi−1(ℓ) + log pℓ,k] , i = 2, 3, . . . , n.

Furthermore, we define:
mi(k) = argmax

ℓ∈{1,...,K}
[vi−1(ℓ) + log pℓ,k] , i = 2, 3, . . . , n.

Therefore, we recursively calculate all the optimal value functions from start to finish. Next, we calculate the final
hidden state which maximizes the final optimal value function, i.e. x∗

n = argmaxk∈{1,...,K} vn(k). This is the final
state which maximizes the joint conditional posterior probability of the entire sequence of hidden states. Then, we
want to maximize the conditional posterior probability of a sequence of hidden states which ends in state x∗

n. The
previous to last state of this hidden Markov chain is given by x∗

n−1 = mn (x∗
n). The rest of the hidden states are

recursively estimated in the same manner. The optimal sequence of hidden states x∗
1, . . . , x∗

n is called a Viterbi
path. The steps of the Viterbi algorithm are summarized below.

Algorithm 4 Viterbi

Input: Observations y1, . . . , yn and estimate ϑ.

1: Calculate the optimal value function v1(·).

2: For i = 2, 3, . . . , n, recursively calculate the rest of the optimal value functions vi(·).

3: Calculate the optimal final state x∗
n = argmaxk∈{1,...,K} vn(k).

4: For i = n − 1, n − 2, . . . , 1, calculate the rest of the optimal states x∗
i = mi+1

(
x∗

i+1
)
.

Output: Optimal sequence of hidden states x∗
1, . . . , x∗

n.
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Viterbi = function(Y, theta, p, P) {

n = length(Y)

K = length(theta)

v = matrix(0, n, K)

m = matrix(0, n - 1, K)

v[1, ] = log(p) + dpois(Y[1], theta, log = TRUE)

for (i in 2:n) {

for (k in 1:K) {

temp = v[i - 1, ] + log(P[, k])

m[i - 1, k] = which.max(temp)

v[i, k] = dpois(Y[i], theta[k], log = TRUE) + max(temp)

}

}

X = numeric(n)

X[n] = which.max(v[n, ])

for (i in (n - 1):1) {

X[i] = m[i, X[i + 1]]

}

return(X)

}

XMAPjoint = Viterbi(Y, MLE$theta, p, MLE$P)

plot(Y, col = XMAPjoint, pch = 16, cex = 0.5)
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table(X, XMAPjoint)

## XMAPjoint

## X 1 2 3

## 1 347 10 0
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## 2 17 301 21

## 3 0 21 283

Local Decoding

Local decoding aims at the separate maximization of the marginal conditional posterior distributions of each hidden
state, i.e. the marginal smoothing distributions ϕi|n(·). Even though global decoding appears as a much stronger
result than local decoding, neither of the two decodings implies the other. For example, local decoding might be
preferable if our goal is to most accurately categorize only certain observations. On the other hand, local decoding
might even lead to non-feasible optimal paths for the hidden Markov chain.

Suppose that we have some estimate ϑ∗ of ϑ. We implement the Forward-Backward algorithm for ϑ = ϑ∗ and get
the marginal smoothing distributions ϕi|n(·) for i = 1, 2, . . . , n. Then, we calculate that:

x∗
i = argmax

k∈{1,...,K}
ϕi|n(k), i = 1, 2, . . . , n.

XMAPmarginal = apply(MLE$marginal, 1, which.max)

plot(Y, col = XMAPmarginal, pch = 16, cex = 0.5)
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table(X, XMAPmarginal)

## XMAPmarginal

## X 1 2 3

## 1 347 10 0

## 2 17 305 17

## 3 0 21 283

12 Viterbi Training Algorithm

The Viterbi training algorithm is an alternative to the Baum-Welch algorithm for the estimation of the unknown
parameters of a HMM. We start with some initial estimate ϑ(0). In place of the Forward-Backward algorithm, we
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implement the Viterbi algorithm for ϑ = ϑ(0) and get a Viterbi path x
(1)
1 , . . . , x

(1)
n . In place of the M-step of the

Baum-Welch algorithm, we maximize the complete-data log-likelihood for x = x(1). We repeat these two steps
until the Viterbi training algorithm converges to a Viterbi path x∗.

Suppose that (Yi | Xi = k) ∼ Poisson(θk). Then, the complete-data log-likelihood is given by:

ℓ (ϑ | y, x) =
K∑

k=1
1 {x1 = k} log pk +

n∑
i=2

K∑
k=1

K∑
ℓ=1

1 {xi−1 = k, xi = ℓ} log pk,ℓ

+
n∑

i=1

K∑
k=1

1 {xi = k} [−θk + yi log θk − log (yi!)] .

We define:

Mk,ℓ =
n∑

i=2
1 {xi−1 = k, xi = ℓ} =

n−1∑
i=1

1 {xi = k, xi+1 = ℓ} ,

Mk =
n−1∑
i=1

1 {xi = k} , Nk =
n∑

i=1
1 {xi = k} , Sk =

n∑
i=1

1 {xi = k} yi.

First, we maximize the complete-data likelihood with respect to each row of the transition probability matrix
separately. We define the following Lagrangian function:

L(pk, λk) =
K∑

ℓ=1
Mk,ℓ log pk,ℓ − λk

(
K∑

ℓ=1
pk,ℓ − 1

)
.

By differentiating with respect to pk,ℓ, we calculate that:

∂L(pk, λk)
∂pk,ℓ

= 1
pk,ℓ

Mk,ℓ − λk ⇒ p
(1)
k,ℓ = 1

λk
Mk,ℓ.

We observe that
∑K

ℓ=1 Mk,ℓ = Mk. By making use of the constraint
∑K

ℓ=1 p
(1)
k,ℓ = 1, we calculate the value of the

Lagrange multiplier λk:

1 =
K∑

ℓ=1
p

(1)
k,ℓ = 1

λk

K∑
ℓ=1

Mk,ℓ = 1
λk

Mk ⇒ λk = Mk.

Therefore, we infer that:
p

(1)
k,ℓ = Mk,ℓ

Mk
,

i.e. the new estimate of pk,ℓ is the percentage of transitions from state k which lead to state ℓ according to the
current Viterbi path. Obviously, this maximization remains the same for any finite state-space HMM.

Next, we differentiate the complete-data log-likelihood with respect to θk:

∂ℓ(ϑ | y, x)
∂θk

=
n∑

i=1
1 {xi = k}

(
−1 + yi

θk

)
⇒ θ

(1)
k = Sk

Nk
,

i.e. the new estimate of θk is the sample average of the observations originating from state k according to the
current Viterbi path.

In contrast with the Baum-Welch algorithm, which weighs all possible paths of the hidden Markov chain according
to their conditional posterior probability in order to provide new estimates of the unknown parameters of the HMM,
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the Viterbi training algorithm only takes the path with the maximum possible conditional posterior probability
into account in each iteration. As a result, the Viterbi training algorithm has a much smaller computational cost
compared to the Baum-Welch algorithm, but without offering any guarantee that the final estimate of ϑ is indeed
going to maximize the observed-data likelihood of the sample.

VTpoisHMM = function(Y, theta, p, P) {

K = length(theta)

steps = 1

loglik = forward(Y, theta, p, P)$loglik

Xprev = numeric(n)

X = Viterbi(Y, theta, p, P)

while (sum(X != Xprev) > 0) {

steps = steps + 1

x = factor(X, levels = 1:K)

M = matrix(aggregate(numeric(n - 1), data.frame(x[-n], x[-1]), length,

drop = FALSE)[, 3], K)

M[is.na(M)] = 0

P = M/rowSums(M)

N = table(x)

S = aggregate(Y ~ x, FUN = sum, drop = FALSE)[, 2]

S[is.na(S)] = 0

theta = S/N

loglik[steps] = forward(Y, theta, p, P)$loglik

Xprev = X

X = Viterbi(Y, theta, p, P)

}

return(list(theta = theta, P = P, loglik = loglik))

}

VT = VTpoisHMM(Y, mean(Y) + sd(Y) * ((1 - K)/2):((K - 1)/2), p, matrix(1, K,

K)/K)

print(VT$theta)

## x

## 1 2 3

## 4.750708 14.899110 24.745161

print(VT$P)

## [,1] [,2] [,3]

## [1,] 0.5823864 0.1875000 0.23011364

## [2,] 0.2581602 0.7091988 0.03264095

## [3,] 0.1935484 0.1032258 0.70322581

XMAPjoint = Viterbi(Y, VT$theta, p, VT$P)

plot(Y, col = XMAPjoint, pch = 16, cex = 0.5)
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## XMAPjoint

## X 1 2 3

## 1 336 21 0

## 2 17 298 24

## 3 0 18 286

plot(VT$loglik[-1], type = "l", xlab = "Iteration", ylab = "Log-Likelihood",

lwd = 2)
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13 Application of the Gibbs Sampler to HMMs

Suppose that the rows of the transition probability matrix are a priori independent with conditionally conjugate
Dirichlet(α) prior distributions and the following probability density functions:

f(pk) = Γ(Kα)
[Γ(α)]K

K∏
ℓ=1

pα−1
k,ℓ ∝

K∏
ℓ=1

pα−1
k,ℓ .

Then, the conditional posterior distribution of the transition probability matrix P is given by:

f(P | x) ∝
K∏

k=1
f(pk)

n∏
i=2

P(Xi = xi | Xi−1 = xi−1, P )

∝
K∏

k=1

K∏
ℓ=1

[
pα−1

k,ℓ

n∏
i=2

p
1{xi−1=k,xi=ℓ}

k,ℓ

]
=

K∏
k=1

K∏
ℓ=1

p
Mk,ℓ+α−1
k,ℓ ,

i.e. the rows pk | x ∼ Dirichlet (Mk,1 + α, Mk,2 + α, . . . , Mk,K + α) of the transition probability matrix are a
posteriori independent, where Mk,ℓ =

∑n
i=2 1{xi−1=k,xi=ℓ} for k, ℓ = 1, 2, . . . , K. As a special case, we can consider

Jeffreys’ prior for the rows of the transition probability matrix, which results for α = 0.5.

Next, we consider the conditionally conjugate Gamma(β, λ) prior distribution for the parameter θk with the
following probability density function:

f(θk) = λβ

Γ(β)θβ−1
k e−λθk ∝ θβ−1

k e−λθk .

Then, the conditional posterior distribution of θk is given by:

f(θk | x, y) ∝ f(θk)
n∏

i=1
f(yi | xi, θk) ∝ θβ−1

k e−λθk

n∏
i=1

(
e−θk

θyi

k

yi!

)1{xi=k}

∝ θSk+β−1
k e−(Nk+λ)θk ,

i.e. θk | x, y ∼ Gamma(Sk + β, Nk + λ), where Sk =
∑n

i=1 yi1{xi=k} for k = 1, 2, . . . , K. As a special case, we can
consider the improper Jeffreys’ prior for θk, which is given by f(θk) ∝ θ−0.5

k and results for β = 0.5, λ = 0.

Finally, we know that the conditional posterior distribution of the hidden Markov chain is given by:

P(X = x | y, ϑ) = ϕn|n(xn)
n−1∏
i=1

Bi(xi, xi+1).

Therefore, we first implement the Forward Filtering algorithm to calculate the filtering distributions ϕi|i(·) for
i = 1, 2, . . . , n. Then, we simulate the final state Xn of the hidden Markov chain from the final filtering distribution
ϕn|n(·). Lastly, we simulate state Xi from the backward transition distribution Bi(·, xi+1) = ϕi|i(·)p·,xi+1 for
i = n − 1, n − 2, . . . , 1.

backward = function(filter, P) {

n = dim(filter)[1]

K = dim(P)[1]

X = numeric(n)

X[n] = sample(K, 1, prob = filter[n, ])

for (i in (n - 1):1) {
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logB = log(filter[i, ]) + log(P[, X[i + 1]])

B = exp(logB - max(logB))

X[i] = sample(K, 1, prob = B)

}

return(X)

}

MCMCpoisHMM = function(Y, theta0, p, P0, alpha, beta, lambda, niter, nburn) {

n = length(Y)

K = length(theta)

theta = matrix(0, niter, K)

P = array(0, c(K, K, niter))

X = matrix(0, niter, n)

theta[1, ] = theta0

P[, , 1] = P0

X[1, ] = backward(forward(Y, theta[1, ], p, P[, , 1])$filter, P[, , 1])

for (j in 2:niter) {

x = factor(X[j - 1, ], levels = 1:K)

M = aggregate(numeric(n - 1), data.frame(x[-n], x[-1]), length, drop = FALSE)[,

3]

P[, , j] = rgamma(Kˆ2, M + alpha)

P[, , j] = P[, , j]/rowSums(P[, , j])

N = table(x)

S = aggregate(Y ~ x, FUN = sum, drop = FALSE)[, 2]

S[is.na(S)] = 0

theta[j, ] = rgamma(K, S + beta, N + lambda)

X[j, ] = backward(forward(Y, theta[j, ], p, P[, , j])$filter, P[, ,

j])

I = order(theta[j, ])

theta[j, ] = theta[j, I]

P[, , j] = P[I, I, j]

X[j, ] = I[X[j, ]]

}

return(list(theta = theta[-(1:nburn), ], P = P[, , -(1:nburn)], X = X[-(1:nburn),

]))

}

posterior = MCMCpoisHMM(Y, mean(Y) + sd(Y) * ((1 - K)/2):((K - 1)/2), p, matrix(1,

K, K)/K, 0.5, 0.5, 0, 2000, 1000)

par(mfrow = c(1, 3))

hist(posterior$theta[, 1], "FD", freq = FALSE, main = NA, xlab = expression(theta[1]))

abline(v = theta[1], col = 2, lty = 2)

hist(posterior$theta[, 2], "FD", freq = FALSE, main = NA, xlab = expression(theta[2]))
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abline(v = theta[2], col = 2, lty = 2)

hist(posterior$theta[, 3], "FD", freq = FALSE, main = NA, xlab = expression(theta[3]))

abline(v = theta[3], col = 2, lty = 2)
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hist(posterior$P[1, 1, ], "FD", freq = FALSE, main = NA, xlab = expression(P[11]))

abline(v = P[1, 1], col = 2, lty = 2)

hist(posterior$P[1, 2, ], "FD", freq = FALSE, main = NA, xlab = expression(P[12]))

abline(v = P[1, 2], col = 2, lty = 2)

hist(posterior$P[1, 3, ], "FD", freq = FALSE, main = NA, xlab = expression(P[13]))

abline(v = P[1, 3], col = 2, lty = 2)

P11

D
en

si
ty

0.50 0.60

0
5

10
15

P12

D
en

si
ty

0.15 0.25

0
2

4
6

8
10

12
14

P13

D
en

si
ty

0.15 0.25

0
5

10
15

34



hist(posterior$P[2, 1, ], "FD", freq = FALSE, main = NA, xlab = expression(P[21]))

abline(v = P[2, 1], col = 2, lty = 2)

hist(posterior$P[2, 2, ], "FD", freq = FALSE, main = NA, xlab = expression(P[22]))

abline(v = P[2, 2], col = 2, lty = 2)

hist(posterior$P[2, 3, ], "FD", freq = FALSE, main = NA, xlab = expression(P[23]))

abline(v = P[2, 3], col = 2, lty = 2)
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hist(posterior$P[3, 1, ], "FD", freq = FALSE, main = NA, xlab = expression(P[31]))

abline(v = P[3, 1], col = 2, lty = 2)

hist(posterior$P[3, 2, ], "FD", freq = FALSE, main = NA, xlab = expression(P[32]))

abline(v = P[3, 2], col = 2, lty = 2)

hist(posterior$P[3, 3, ], "FD", freq = FALSE, main = NA, xlab = expression(P[33]))

abline(v = P[3, 3], col = 2, lty = 2)
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XMAP = apply(posterior$X, 2, function(x) {

which.max(table(factor(x, levels = 1:K)))

})

plot(Y, col = XMAP, pch = 16, cex = 0.5)
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table(X, XMAP)

## XMAP

## X 1 2 3

## 1 347 10 0

## 2 17 305 17

## 3 0 21 283
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