
Advanced Applied Statistical Methods

Vasileios (Bill) Katsianos

August 2024

Contents

1 Advanced Topics in Linear Regression 1

2 Heteroscedasticity and Autocorrelation 53

3 Experimental Design 94

4 Robust Regression 107

5 Penalized Regression 111

6 Multiple Testing 136

7 Selective Inference 167

8 Conformal Inference 175

9 Gaussian Processes 180

10 Empirical Bayes 184

1 Advanced Topics in Linear Regression

Simpson’s Paradox

Simpson’s paradox arises when two variables appear to be negatively (or positively) correlated when they are
regarded by themselves, but their true positive (or negative) correlation is uncovered after taking another confounding
variable into account. This phenomenon can be illustrated through the sat data set from the faraway package,
which contains information on public school expenditure and SAT test scores for each of the 50 US states. After
regressing the average total SAT score per state on the daily expenditure per pupil in US public schools, we observe
that the amount of expenditure has a statistically significant negative effect on average total SAT score. This fact
is quite surprising since one would normally expect that states which allocate more money on public education
would boast better SAT scores.

library(faraway)
library(xtable)

1

reduced = lm(total ~ expend, sat)
print(xtable(summary(reduced)), comment = FALSE)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1089.2937 44.3900 24.54 0.0000

expend -20.8922 7.3282 -2.85 0.0064

plot(total ~ expend, sat, pch = 16)
abline(reduced, lty = 2, lwd = 2)

4 5 6 7 8 9 10

85
0

95
0

10
50

expend

to
ta

l

It turns out that after taking the percentage of per state eligible students taking the SAT into account, the true
positive effect of expenditure on average total SAT scores reveals itself. The percentage of eligible students taking
the SAT obviously has a negative effect on average total SAT scores. In states with a low percentage of takers,
only the most well prepared students end up taking the SAT, and their scores are accordingly higher than average.
On the other hand, in states with a high percentage of takers, a lot of unprepared students are encouraged to take
the SAT anyway, which leads to a dilution of the average total scores. The reason why the correlation between
expenditure and average total SAT score appears to be negative, when ignoring the percentage of eligible students
taking the test, is that expenditure is positively correlated with the percentage of eligible students taking the test.
In states which allocate a lot of money on public education, more students are encouraged to take the SAT and
vice versa. By ignoring the percentage of eligible students taking the SAT, some of the effect of that variable on
the average total SAT score is passed along to the expenditure variable instead, reversing its perceived effect on
the response variable.

full = lm(total ~ expend + takers, sat)
print(xtable(summary(full)), comment = FALSE)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 993.8317 21.8332 45.52 0.0000

expend 12.2865 4.2243 2.91 0.0055
takers -2.8509 0.2151 -13.25 0.0000

2

print(xtable(cor(sat[, c(1, 4, 7)]), digits = c(0, 4, 4, 4)), comment = FALSE)

expend takers total
expend 1.0000 0.5926 -0.3805
takers 0.5926 1.0000 -0.8871

total -0.3805 -0.8871 1.0000

We can simulate a scenario which gives rise to this phenomenon in order to gain more insight into it. First, we
simulate a normally distributed explanatory variable X. Then, we simulate a binomial confounding variable Z,
whose probability of success is an increasing function of X. Lastly, we simulate a response variable Y on which X

has a positive effect while Z has a negative effect.

n = 100
X = rnorm(n)
Z = rbinom(n, 3, pnorm(X))
Y = 1 + 2 * X - 3 * Z + rnorm(n)

We can see from the regression summary, as well as the scatter plot, that X appears to have a statistically significant
negative effect on Y when the confounding variable Z is ignored. This is because the explanatory variable X,
which is positively correlated with the confounding variable Z, takes on some of the effect of the confounding
variable Z on the response variable Y , reversing its marginal effect on Y .

library(xtable)
reduced = lm(Y ~ X)
print(xtable(summary(reduced)), comment = FALSE)

Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.6782 0.2404 -15.30 0.0000

X -1.0376 0.2737 -3.79 0.0003

plot(X, Y, pch = 16)
abline(reduced, lty = 2, lwd = 2)

3

−2 −1 0 1 2

−
10

−
6

−
4

−
2

0

X

Y

After taking the effect of the confounding variable Z on the response variable Y into account, the true positive
effect of the explanatory variable X on the response variable Y is restored.

full = lm(Y ~ X + Z)
print(xtable(summary(full)), comment = FALSE)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.1881 0.2616 4.54 0.0000

X 2.0660 0.1942 10.64 0.0000
Z -3.0662 0.1509 -20.33 0.0000

print(xtable(cor(cbind(X, Z, Y)), digits = c(0, 4, 4, 4)), comment = FALSE)

X Z Y
X 1.0000 0.7863 -0.3576
Z 0.7863 1.0000 -0.8004
Y -0.3576 -0.8004 1.0000

The confounding effect of the Z variable can also be illustrated by stratifying the sample according to Z and fitting
separate linear regression models on each subset of the sample.

plot(X, Y, col = Z + 1, pch = 16)
for (i in 1:4) {

fit = lm(Y ~ X, subset = Z == i - 1)
abline(fit, col = i, lty = 2, lwd = 2)
print(xtable(summary(fit)), comment = FALSE)

}

4

−2 −1 0 1 2

−
10

−
6

−
4

−
2

0

X

Y

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.8407 0.5361 1.57 0.1325

X 1.7800 0.4844 3.67 0.0015

Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.8713 0.2469 -7.58 0.0000

X 2.3009 0.5303 4.34 0.0002

Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.6698 0.2045 -22.84 0.0000

X 2.2818 0.3670 6.22 0.0000

Estimate Std. Error t value Pr(>|t|)
(Intercept) -8.2223 0.3553 -23.14 0.0000

X 2.1494 0.3170 6.78 0.0000

Hypothesis Testing for Linear Constraints

Suppose we have a linear regression model Y = Xβ + ε, where X ∈ Rn×p, β ∈ Rp, ε ∼ Nn

(
0n, σ2In

)
, and we want

to perform a test for the hypotheses H0 : Rβ = r vs. H1 : Rβ = r, where R ∈ Rk×p and r ∈ Rk. Then, there are a
number of different statistical tests which we might employ.

First, we might observe that Rβ̂ ∼ Nk

(
r, σ2R

(
XTX

)−1
RT
)

under the null hypothesis, where β̂ =
(
XTX

)−1
XTY .

This implies that:
Q1 = 1

σ2

(
Rβ̂ − r

)T [
R
(
XTX

)−1
RT
]−1 (

Rβ̂ − r
)

∼ χ2
k.

Additionally, we know that:
Q2 = n − p

σ2 S2 = 1
σ2

∥∥∥Y − Xβ̂
∥∥∥2

2
∼ χ2

n−p.

5

According to Cochran’s theorem, Q1 and Q2 are mutually independent. Under the null hypothesis, we infer that:

F = Q1/k

Q2/(n − p) = 1
kS2

(
Rβ̂ − r

)T [
R
(
XTX

)−1
RT
]−1 (

Rβ̂ − r
)

∼ Fk,n−p.

This is an exact F test statistic for the given hypotheses. We reject the null hypothesis when the observed value f

of the test statistic is larger than the quantile Fk,n−p;α or, equivalently, when p-value = P(F ⩾ f) < α.

According to the strong law of large numbers, we could also make use of the fact that:

Q2

n − p

a.s.→ 1.

According to Slutsky’s theorem, we infer that:

W = Q1

Q2/(n − p) = kF = 1
S2

(
Rβ̂ − r

)T [
R
(
XTX

)−1
RT
]−1 (

Rβ̂ − r
)

d→ χ2
k.

This is an asymptotic Wald test statistic for the given hypotheses. We reject the null hypothesis when the observed
value w of the test statistic is larger than the quantile χ2

k;α or, equivalently, when p-value = P(W ⩾ w) < α.

Alternatively, we could calculate the MLE β̂0 of β under the null hypothesis. We want to maximize the log-likelihood
function ℓ

(
β, σ2 | Y

)
with respect to β under the constraint Rβ = r, so we are going to utilize the method of

Lagrange multipliers. Let λ ∈ Rk. Then, we want to maximize the following function:

L(β, σ2, λ) = −n

2 log
(
2πσ2)− 1

2σ2 ∥Y − Xβ∥2
2 − λT (Rβ − r) .

First, we differentiate with respect to the vector β:

∂L(β, σ2, λ)
∂β

= 1
σ2 XT(Y − Xβ) − RTλ

Hence, we infer that σ2RTλ = XTY − XTXβ̂0. By left-multiplying both sides of this equation by R
(
XTX

)−1 we
get that:

σ2R
(
XTX

)−1
RTλ = R

(
XTX

)−1
XTY − R�����(

XTX
)−1

���XTX β̂0.

We observe that
(
XTX

)−1
XTY = β̂ and Rβ̂0 = r, so we infer that:

λ = 1
σ2

[
R
(
XTX

)−1
RT
]−1 (

Rβ̂ − r
)

.

By substituting this expression for λ into the normal equation for β̂0 to get that:

XTXβ̂0 = XTY − RT
[
R
(
XTX

)−1
RT
]−1 (

Rβ̂ − r
)

⇒

β̂0 = β̂ −
(
XTX

)−1
RT
[
R
(
XTX

)−1
RT
]−1 (

Rβ̂ − r
)

.

Additionally, we define the following MLEs of σ2 under the full and the reduced models respectively:

σ̂2 = 1
n

∥∥∥Y − Xβ̂
∥∥∥2

2
, σ̂2

0 = 1
n

∥∥∥Y − Xβ̂0

∥∥∥2

2
.

6

According to Wilks’ theorem, we infer that:

LR = −2
[
ℓ
(

β̂0, σ̂2
0

∣∣∣Y)− ℓ
(

β̂, σ̂2
∣∣∣Y)] = −n log σ̂2

σ̂2
0

d→ χ2
k.

This is an asymptotic Likelihood Ratio test statistic. We reject the null hypothesis when the observed value
LR0 of the test statistic is larger than the quantile χ2

k;α or, equivalently, when p-value = P(LR ⩾ LR0) < α.

Lastly, we could calculate the score function and the Fisher information matrix for β as follows:

Sσ2(β) =
∂ℓ
(
β, σ2 | Y

)
∂β

= 1
σ2 XT(Y − Xβ),

∂2ℓ
(
β, σ2 | Y

)
∂β∂β

= − 1
σ2 XTX,

Iσ2(β) = −E

[
∂2ℓ

(
β, σ2 | Y

)
∂β∂β

]
= 1

σ2 XTX.

Therefore, we get the following asymptotic Score test (or Lagrange Multiplier test) statistic:

ST = S
σ̂2

0

(
β̂0

)T
I

σ̂2
0

(
β̂0

)−1
S

σ̂2
0

(
β̂0

)
= 1

σ̂2
0

(
Y − Xβ̂0

)T
X
(
XTX

)−1
XT

(
Y − Xβ̂0

)
= 1

σ̂2
0

ε̂T
0 P ε̂0

= 1
σ̂2

0
∥P ε̂0∥2

2 = 1
σ̂2

0
∥P (In − P0) Y ∥2

2 = 1
σ̂2

0
∥(P − P0) Y ∥2

2
d→ χ2

k,

where ε̂0 = Y − Xβ̂0 is the residual vector of the reduced model, P = X
(
XTX

)−1
XT is the orthogonal projection

matrix corresponding to the design matrix X and P0 = X0
(
XT

0 X0
)−1

XT
0 is the orthogonal projection matrix

corresponding to the design matrix X0 of the reduced model. Note that PP0 = P0P = P0. We reject the null
hypothesis when the observed value ST0 of the test statistic is larger than the quantile χ2

k;α or, equivalently, when
p-value = P(ST ⩾ ST0) < α.

Finally, we observe that:

σ̂2
0ST =

(
Y − Xβ̂0

)T
X
(
XTX

)−1
XT

(
Y − Xβ̂0

)
=
{

X
(
XTX

)−1
RT
[
R
(
XTX

)−1
RT
]−1 (

Rβ̂ − r
)}T

PX
(
XTX

)−1
RT
[
R
(
XTX

)−1
RT
]−1 (

Rβ̂ − r
)

=
(

Rβ̂ − r
)T [

R
(
XTX

)−1
RT
]−1

R
(
XTX

)−1
XTPX

(
XTX

)−1
RT
[
R
(
XTX

)−1
RT
]−1 (

Rβ̂ − r
)

=
(

Rβ̂ − r
)T [

R
(
XTX

)−1
RT
]−1 (

Rβ̂ − r
)

= S2W.

Note that X
(
XTX

)−1
XT

(
Y − Xβ̂

)
= P ε̂ = P (In − P) Y = 0n. In other words, the Wald and score test

statistics only differ in terms of the residual variance estimation. The Wald test statistic utilizes an unbiased
estimator of the residual variance under the full model, whereas the score test statistic utilizes the MLE of the
residual variance under the reduced model.

Now, we illustrate these various test statistics on the prostate data set from the faraway package. Let:

lpsai = β0 + β1lcavoli + β2lweighti + β3svii + εi,

7

where εi ∼ N
(
0, σ2) are independent for i = 1, 2, . . . , n. We observe that the estimated coefficients for lcavol,

lweight and svi are pretty close numerically, while their corresponding standard errors are also pretty high.

library(faraway)
library(xtable)
n = dim(prostate)[1]
p = 4
full = lm(lpsa ~ lcavol + lweight + svi, prostate)
betafull = full$coefficients
S = summary(full)$sigma
sigmafull = sqrt(mean(full$residualsˆ2))
Y = full$model[, 1]
X = model.matrix(full)
print(xtable(summary(full)), comment = FALSE)

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.2681 0.5435 -0.49 0.6230

lcavol 0.5516 0.0747 7.39 0.0000
lweight 0.5085 0.1502 3.39 0.0010

svi 0.6662 0.2098 3.18 0.0020

Suppose we want to perform the hypothesis test H0 : β1 = β2 = β3 vs. every possible alternative. Under the null
hypothesis, we observe that:

lpsai = β0 + β1 (lcavoli + lweighti + svii) + εi.

We define:

R =
[

0 1 −1 0
0 0 1 −1

]
∈ R2×4, r =

[
0
0

]
∈ R2.

Then, we can calculate the MLE of β under the null hypothesis H0 : Rβ = r.

k = 2
R = rbind(c(0, 1, -1, 0), c(0, 0, 1, -1))
r = c(0, 0)
betareduced = betafull - drop(solve(crossprod(X), t(R)) %*% solve(R %*% solve(crossprod(X),

t(R)), R %*% betafull - r))
all.equal(solve(crossprod(X)), summary(full)$cov.unscaled)

[1] TRUE

residuals = Y - drop(X %*% betareduced)
sigmareduced = sqrt(mean(residualsˆ2))
print(xtable(t(data.frame(Estimate = betareduced)), digits = c(0, rep(4, 4))),

comment = FALSE)

(Intercept) lcavol lweight svi
Estimate -0.4725 0.5654 0.5654 0.5654

8

reduced = lm(lpsa ~ I(lcavol + lweight + svi), prostate)
print(xtable(summary(reduced)), comment = FALSE)

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.4725 0.2454 -1.93 0.0572

I(lcavol + lweight + svi) 0.5654 0.0449 12.58 0.0000

First, we perform the F test. The observed value of the test statistic is 0.19 and the corresponding p-value is 0.83,
which implies failure to reject the null hypothesis H0 : β1 = β2 = β3, as expected. We verify our calculations by
using R’s built-in anova function to compare the reduced against the full model.

FT = drop(crossprod(R %*% betafull - r, solve(R %*% solve(crossprod(X), t(R)),
R %*% betafull - r)))/(k * Sˆ2)

print(FT)

[1] 0.186172

pf(FT, k, n - p, lower.tail = FALSE)

[1] 0.8304394

print(xtable(anova(reduced, full)), comment = FALSE)

Res.Df RSS Df Sum of Sq F Pr(>F)
1 95 47.98
2 93 47.78 2 0.19 0.19 0.8304

Next, we perform the Wald test. The observed value of the test statistic is 0.37 and the corresponding p-value is
0.83, which similarly implies failure to reject the null hypothesis H0 : β1 = β2 = β3. We verify our calculations by
again using R’s built-in anova function with the argument test = “Chisq” to compare the reduced against the full
model.

WT = k * FT
print(WT)

[1] 0.372344

pchisq(WT, k, lower.tail = FALSE)

[1] 0.8301308

print(xtable(anova(reduced, full, test = "Chisq")), comment = FALSE)

Res.Df RSS Df Sum of Sq Pr(>Chi)
1 95 47.98
2 93 47.78 2 0.19 0.8301

Subsequently, we perform the likelihood ratio test. The observed value of the test statistic is 0.39 and the

9

corresponding p-value is 0.82, which similarly implies failure to reject the null hypothesis H0 : β1 = β2 = β3. We
verify our calculations by using the lrtest function from the lmtest package to compare the reduced against the full
model.

library(lmtest)
LR = -2 * (logLik(reduced)[1] - logLik(full)[1])
print(LR)

[1] 0.3875834

LR = -n * log(sigmafullˆ2/sigmareducedˆ2)
print(LR)

[1] 0.3875834

pchisq(LR, k, lower.tail = FALSE)

[1] 0.8238295

print(xtable(lrtest(reduced, full)), comment = FALSE)

#Df LogLik Df Chisq Pr(>Chisq)
1 3 -103.49
2 5 -103.30 2 0.39 0.8238

Lastly, we perform the score test. The observed value of the test statistic is 0.39 and the corresponding p-value is
0.82, which similarly implies failure to reject the null hypothesis H0 : β1 = β2 = β3. We observe that the results of
all the test statistics concur. Furthermore, the results of the asymptotic Wald, likelihood ratio and score tests are
perfectly in line with the results of the exact F test, even with a moderate sample size of n = 97 observations. We
also verify that the numerators of the Wald and score test statistics coincide with each other.

SF = crossprod(X, residuals)/sigmareducedˆ2
FI = crossprod(X)/sigmareducedˆ2
ST = drop(crossprod(SF, solve(FI, SF)))
print(ST)

[1] 0.3868101

P = X %*% solve(crossprod(X), t(X))
ST = sum((P %*% residuals)ˆ2)/sigmareducedˆ2
print(ST)

[1] 0.3868101

X0 = cbind(X[, 1], rowSums(X[, -1]))
P0 = X0 %*% solve(crossprod(X0), t(X0))
ST = sum(((P - P0) %*% Y)ˆ2)/sigmareducedˆ2
print(ST)

[1] 0.3868101

10

pchisq(ST, k, lower.tail = FALSE)

[1] 0.8241481

all.equal(drop(crossprod(R %*% betafull - r, solve(R %*% solve(crossprod(X),
t(R)), R %*% betafull - r))), sum((P %*% residuals)ˆ2))

[1] TRUE

Bias-Variance Trade-off

We know that the MSE of an estimator β̂ of a parameter vector β ∈ Rp can be decomposed in the following manner:

MSE
(

β̂
)

= E
∥∥∥β̂ − β

∥∥∥2

2
= E

∥∥∥β̂ − E
(

β̂
)∥∥∥2

2
+
∥∥∥E(β̂

)
− β

∥∥∥2

2
= tr

[
Var

(
β̂
)]

+
∥∥∥Bias

(
β̂
)∥∥∥2

2
.

This decomposition of the MSE of an estimator is known as the bias-variance decomposition. In linear regression
we know that the least squares estimator β̂ is the best linear unbiased estimator (BLUE) of β. However, this is
only the case if the fitted model coincides with the true model which generated the response variable. If the fitted
model is missing some important predictors, then our least squares estimator becomes biased. Conversely, if our
fitted model includes some redundant predictors, then the variance of our least squares estimator gets inflated.

Now, we illustrate this bias-variance trade-off on simulated data. Suppose we have a linear regression model
Y = Xβ + ε, where X ∈ Rn×p, β ∈ Rp and ε ∼ Nn

(
0n, σ2In

)
. First, we simulate p = 20 normally distributed

predictors X1, X2, . . . , Xp of size n = 1000 and normalize them so that their Euclidean norm is equal to 1. The
effect of the first 10 predictors on the response variable is equal to 2, while the other 10 have no effect on the
response variable. Then, we simulate nsim = 10000 samples Y (1), Y (2), . . . , Y (nsim) of size n = 1000 from this linear
regression model with σ2 = 1.

n = 1000
p = 20
beta = c(rep(2, p/2), numeric(p/2))
X = matrix(rnorm(n * p), n)
X = t(t(X)/sqrt(colSums(Xˆ2)))
nsim = 10000
Y = drop(X %*% beta) + matrix(rnorm(n * nsim), n)

For j = 1, 2, . . . , p, we define the linear model Y = X(j)β(j) + ε, where X(j) =
[
X1 X2 · · · Xj

]
∈ Rn×j and

β(j) ∈ Rj . For k = 1, 2, . . . , nsim, we fit this linear regression model with response variable Y (k) and calculate the
corresponding least squares estimator as follows:

β̂(j,k) =

(
X(j)T

X(j)
)−1

X(j)T
Y (k)

0
...
0

 ∈ Rp.

11

Then, we estimate the bias, the variance and the MSE of β̂(j) as follows:

B̂ias
[
β̂(j)

]
=
∥∥∥∥∥ 1

nsim

nsim∑
k=1

β̂(j,k) − β

∥∥∥∥∥
2

,

V̂ar
[
β̂(j)

]
= 1

nsim

nsim∑
k=1

∥∥∥∥∥β̂(j,k) − 1
nsim

nsim∑
ℓ=1

β̂(j,ℓ)

∥∥∥∥∥
2

2

,

M̂SE
[
β̂(j)

]
= 1

nsim

nsim∑
k=1

∥∥∥β̂(j,k) − β
∥∥∥2

2
.

We verify that the estimated MSE of β̂(j) satisfies the bias-variance decomposition for j = 1, 2, . . . , p.

Bias = numeric(p)
Var = numeric(p)
MSE = numeric(p)
for (j in 1:p) {

betahat = rbind(solve(crossprod(X[, 1:j]), crossprod(X[, 1:j], Y)), matrix(0,
p - j, nsim))

Bias[j] = sqrt(sum((rowMeans(betahat) - beta)ˆ2))
Var[j] = mean(colSums((betahat - rowMeans(betahat))ˆ2))
MSE[j] = mean(colSums((betahat - beta)ˆ2))

}
all.equal(MSE, Var + Biasˆ2)

[1] TRUE

We observe that the estimated bias of β̂(j) is initially severely inflated for j = 1 and decreases as we keep adding
important predictors to the linear regression model for j = 2, 3, . . . , 10. For j = 10, the estimator β̂(j) becomes an
unbiased estimator of β and remains so after adding other redundant predictors to the linear regression model for
j = 11, 12, . . . , 20. On the other hand, the variance of β̂(j) steadily increases for every additional predictor we add
to the linear regression model. Naturally, the MSE of β̂(j) strikes a balance between the bias and the variance of
β̂(j). It is minimized by the true linear regression model with the first 10 predictors, since this linear regression
model leads to an unbiased estimator of β without any redundant predictors to unnecessarily increase its variance.
For j = 10, 11, . . . , 20, the estimated MSE of β̂(j) is approximately equal to its estimated variance, since β̂(j) is
unbiased.

plot(MSE, type = "b", ylim = c(0, max(MSE)), xlab = "Number of Covariates",
ylab = NA, col = "purple", pch = 16, lwd = 2)

lines(Bias, type = "b", col = "red", pch = 16, lwd = 2)
lines(Var, type = "b", col = "blue", pch = 16, lwd = 2)
abline(v = which.min(MSE), lty = 2)
legend("topright", c("Bias", "Variance", "MSE", "Truth"), col = c("red", "blue",

"purple", "black"), lty = c(rep(1, 3), 2), lwd = c(rep(2, 3), 1), pch = c(rep(16,
3), NA), cex = 0.5)

12

5 10 15 20

0
10

20
30

Number of Covariates

Bias
Variance
MSE
Truth

Model Selection

One of the most commonly utilized model selection methods for linear regression is step-wise regression, since it
provides a computationally feasible alternative to best subset selection. Step-wise regression methods produce a
sequence of linear regression models with increasing or decreasing number of predictors. The predictor to be added
or removed at each step of the step-wise selection procedure is selected based on some pre-specified criterion. Then,
the best linear regression model is picked out of the sequence of models produced by step-wise regression based
again on some pre-specified (possibly the same) criterion.

One of the many issues with step-wise regression methods is that the same data set is usually utilized for both the
initial predictor selection and the final model selection. If the set of available predictors is fairly large, then a lot
of truly redundant predictors will falsely appear to have a statistically significant effect on the response variable
simply due to random chance. In the forward selection procedure, the best predictor out of those predictors will
be selected to be added to the linear regression model at each step. Since the final model selection criterion is
calculated on the same set of data, it will be biased towards selecting a linear regression model which includes a
lot of those redundant predictors, even if the penalty for each additional predictor is harsh. Consequently, these
step-wise regression methods often lead to a severe over-fitting of the linear regression model.

One easy workaround is to split the data set into a training set, a validation set and a test set, provided that the
sample size is large enough. First, step-wise regression is performed on the training set to produce a sequence of
candidate linear regression models. Then, the model selection criterion is computed based on the validation set for
each of the candidate linear regression models, and the best model out of them is selected. Finally, inference is
made on the test set based on the selected linear regression model.

Now, we illustrate this over-fitting phenomenon and the proper way to address it based on simulated data. Suppose
we have a linear regression model Y = Xβ + ε, where X ∈ Rn×p, β ∈ Rp and ε ∼ Nn

(
0n, σ2In

)
. First, we

simulate p = 2000 normally distributed predictors X1, X2, . . . , Xp of size n = 3000 and normalize them so that
their Euclidean norm is equal to 1. The effect of the first 10 predictors on the response variable is equal to 10,
while the other 1990 have no effect on the response variable. Then, we take a sample Y of size n = 3000 from this
linear regression model with σ2 = 1.

13

n = 3000
p = 2000
beta = c(rep(10, 10), numeric(p - 10))
X = matrix(rnorm(n * p), n)
X = t(t(X)/sqrt(colSums(Xˆ2)))
Y = X %*% beta + rnorm(n)

First, we apply the forward selection procedure to produce a sequence of linear regression models with up to
20 predictors. We use a t test of statistical significance to select the best available predictor at each step of the
selection procedure. In other words, we in turn add each available predictor to the previously selected linear
regression model and calculate the p-value of the t test of statistical significance for its coefficient. Then, the
predictor with the smallest possible p-value is selected to be added to the linear regression model. Finally, we
calculate the Bayesian information criterion for each of the linear regression models produced by the step-wise
regression method. We see that the linear regression model which minimizes the value of BIC makes use of at least
20 predictors, even though only 10 of them have an actual effect on the response variable.

bic = numeric(20)
for (k in 1:20) {

pval = rep(1, p)
for (j in k:p) {

fit = lm(Y ~ X[, c(seq_len(k - 1), j)])
pval[j] = summary(fit)$coefficients[k + 1, 4]

}
ind = which.min(pval)
X[, c(k, ind)] = X[, c(ind, k)]
fit = lm(Y ~ X[, seq_len(k)])
bic[k] = (k + 2) * log(n) - 2 * logLik(fit)[1]

}
which.min(bic)

[1] 20

In order to rectify this, we split the data set into a training, a validation and a test set of equal sizes. First, we
perform exactly the same forward selection procedure, but only on the training set. Then, we calculate the mean
squared prediction error for each of the linear regression models produced by the step-wise regression method
on the validation set. We see that the linear regression model which minimizes the value of MSPE makes use of
exactly 10 predictors, which coincides with the true number of predictors in the simulated linear regression model.
After selecting that linear regression model, we can perform inference by fitting it on the test set.

train = sample(n, n/3)
valid = sample(setdiff(1:n, train), n/3)
test = setdiff(1:n, c(train, valid))
mspe = numeric(20)
for (k in 1:20) {

pval = rep(1, p)
for (j in k:p) {

14

fit = lm(Y ~ X[, c(seq_len(k - 1), j)], subset = train)
pval[j] = summary(fit)$coefficients[k + 1, 4]

}
ind = which.min(pval)
X[, c(k, ind)] = X[, c(ind, k)]
fit = lm(Y ~ X[, seq_len(k)], subset = train)
mspe[k] = mean((Y[valid] - cbind(1, X[valid, seq_len(k)]) %*% fit$coefficients)ˆ2)

}
which.min(mspe)

[1] 10

fit = lm(Y ~ X[, seq_len(which.min(mspe))], subset = test)

Box-Cox Transformation

In order to eliminate non-linearity, non-constant variance or non-normality, a transformation of the response
variable is often required. In the case where the response variable is strictly positive, the most commonly used
method is the following Box-Cox transformation:

y
(λ)
i =

yλ

i −1
λ , λ ̸= 0

log yi, λ = 0
.

Then, we assume that Y (λ) = Xβλ + ε, where X ∈ Rn×p, βλ ∈ Rp and ε ∼ Nn

(
0n, σ2

λIn

)
.

In order to select the optimal value of λ, we first fit this linear regression model for a grid of different values of
λ and calculate the corresponding MLEs β̂λ, σ̂2

λ of βλ and σ2
λ respectively. The goal is to maximize the profile

likelihood L
(

λ
∣∣∣y, β̂λ, σ̂2

λ

)
of λ given the original response variable y with respect to λ. In order to calculate the

profile likelihood of λ, we first need to calculate the Jacobian of the transformation:

∂y
(λ)
i

∂yi
= yλ−1

i .

Therefore, we get that:

L
(

λ
∣∣∣y, β̂λ, σ̂2

λ

)
=

n∏
i=1

fYi

(
yi; λ, β̂λ, σ̂2

λ

)
=

n∏
i=1

f
Y

(λ)
i

(
y

(λ)
i ; β̂λ, σ̂2

λ

) ∣∣∣∣∣∂y
(λ)
i

∂yi

∣∣∣∣∣
=
(
2πσ̂2

λ

)−n/2 exp
{

− 1
2σ̂2

λ

[
y(λ) − Xβ̂λ

]T [
y(λ) − Xβ̂λ

]} n∏
i=1

yλ−1
i .

In practice, we want our linear regression model to be interpretable, so we never use the actual optimal value λ̂

yielded by the Box-Cox analysis. Instead, we use a generalized likelihood ratio test to construct a 100(1 − α)%
asymptotic confidence interval for λ. Then, we select a value of λ within the bounds of that CI which will
lead to a meaningful transformation, such as a log transformation, a square root transformation or a reciprocal

15

transformation. According to Wilks’ theorem, we know that:

LRλ0 = −2
[
ℓ
(

λ0

∣∣∣y, β̂λ0 , σ̂2
λ0

)
− ℓ

(
λ̂
∣∣∣y, β̂

λ̂
, σ̂2

λ̂

)]
d→ χ2

1,

under the null hypothesis H0 : λ = λ0. Then, a 100(1 − α)% asymptotic CI for λ is given by the set of all λ0 values
which lead to a failure to reject the null hypothesis of the likelihood ratio test against the alternative hypothesis
H1 : λ ̸= λ0. In other words,

Iλ; 1−α(y) =
{

λ ∈ R : LRλ ⩽ χ2
1;α
}

=
{

λ ∈ R : ℓ
(

λ
∣∣∣y, β̂λ, σ̂2

λ

)
⩾ ℓ

(
λ̂
∣∣∣y, β̂

λ̂
, σ̂2

λ̂

)
− 1

2χ2
1;α

}
.

Now, we illustrate the Box-Cox transformation on the gala data set from the faraway package. First, we observe
that the distribution of the elevation predictor is severely skewed. After attempting a square root and a log
transformation of the predictor, we observe that the distribution of elevation appears to be approximately normal
under the log transformation.

library(faraway)
X = gala$Elevation
par(mfrow = c(1, 3))
boxplot(X, ylab = "Elevation", pch = 16)
boxplot(sqrt(X), ylab = "Square Root of Elevation", pch = 16)
boxplot(log(X), ylab = "Log of Elevation", pch = 16)

0
50

0
10

00
15

00

E
le

va
tio

n

10
20

30
40

S
qu

ar
e

R
oo

t o
f E

le
va

tio
n

4
5

6
7

Lo
g

of
 E

le
va

tio
n

Hence, we opt to fit a linear regression model with log-elevation as a predictor. However, the resulting regression
curve and its corresponding prediction region don’t appear to capture the trend in the response variable very well.
We also observe that the variation in the standardized residuals appears to increase proportionally to the fitted
values, which is a clear sign of heteroscedasticity. We also see evidence of a non-linear relationship between the
predictor and the response variable.

fit = lm(Species ~ log(Elevation), gala)
Y = fit$model[, 1]
x = seq(min(X), max(X), 0.1)

16

predictions = predict(fit, data.frame(Elevation = x), interval = "prediction")
plot(Species ~ Elevation, gala, ylim = c(min(predictions), max(Y)), pch = 16)
lines(predictions[, 1] ~ x, col = 2, lty = 2, lwd = 2)
polygon(c(x, rev(x)), c(predictions[, 2], rev(predictions[, 3])), border = NA,

col = rgb(1, 0, 0, 0.25))

0 500 1000 1500

−
20

0
0

20
0

40
0

Elevation

S
pe

ci
es

plot(fit$fitted.values, rstandard(fit), xlab = "Fitted Values", ylab = "Standardized Residuals",
pch = 16)

abline(h = 0, col = 2, lty = 2, lwd = 2)

−50 0 50 100 150 200 250

−
2

−
1

0
1

2
3

Fitted Values

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

In order to rectify this, we try applying a Box-Cox transformation. We fit the linear model Y
(λ)

i = β0 +β1 log Xi +εi

for a range of λ values from −2 to 2 and calculate the corresponding values of the profile log-likelihood. The
resulting 95% asymptotic CI for λ ranges from −0.02 to 0.37. Since λ = 0 and λ = 1/3 lie within this CI, we
conclude that a log or a cube root transformation of the response variable would be most appropriate. We can
verify the validity of our calculations by using the boxcox function from the MASS package. We see that this

17

approach yields an identical 95% CI for λ.

library(MASS)
alpha = 0.05
lambda = seq(-2, 2, 0.01)
loglik = numeric(401)
for (i in 1:401) {

if (lambda[i] == 0) {
Ypower = log(Y)

} else {
Ypower = (Yˆlambda[i] - 1)/lambda[i]

}
power = lm(Ypower ~ log(Elevation), gala)
loglik[i] = logLik(power)[1] + (lambda[i] - 1) * sum(log(Y))

}
CI = range(lambda[loglik > max(loglik) - qchisq(alpha, 1, lower.tail = FALSE)/2])
print(CI)

[1] -0.02 0.37

plot(lambda, loglik, "l", xlab = expression(lambda), ylab = "Profile Log-Likelihood")
abline(h = max(loglik) - qchisq(alpha, 1, lower.tail = FALSE)/2, lty = 2)
abline(v = CI, lty = 2)

−2 −1 0 1 2

−
26

0
−

22
0

−
18

0

λ

P
ro

fil
e

Lo
g−

Li
ke

lih
oo

d

BC = boxcox(fit, lambda)

18

−2 −1 0 1 2

−
16

0
−

12
0

−
80

λ

lo
g−

Li
ke

lih
oo

d

 95%

range(BC$x[BC$y > max(BC$y) - qchisq(alpha, 1, lower.tail = FALSE)/2])

[1] -0.02 0.37

After applying either the log or the cube root transformation to the response variable, the heteroscedasticity in the
standardized residuals has been eliminated, and the non-linear pattern has completely vanished.

par(mfrow = c(1, 2))
power = lm(log(Species) ~ log(Elevation), gala)
plot(power$fitted.values, rstandard(power), main = "Log Transformation", xlab = "Fitted Values",

ylab = "Standardized Residuals", pch = 16)
abline(h = 0, col = 2, lty = 2, lwd = 2)
power = lm(Speciesˆ(1/3) ~ log(Elevation), gala)
plot(power$fitted.values, rstandard(power), main = "Cube Root Transformation",

xlab = "Fitted Values", ylab = "Standardized Residuals", pch = 16)
abline(h = 0, col = 2, lty = 2, lwd = 2)

19

2 3 4 5

−
2

−
1

0
1

2

Log Transformation

Fitted Values

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

1 2 3 4 5 6

−
1

0
1

2

Cube Root Transformation

Fitted Values
S

ta
nd

ar
di

ze
d

R
es

id
ua

ls
Since we have used a transformation on the response variable, we have to reverse the transformation on the
predictions we make in order to predict the response variable on its original scale. We observe that the regression
curve resulting from the cube root transformation is doing a much better job of capturing the trend in the response
variable than both the original regression line and the one resulting from the log transformation.

par(mfrow = c(1, 2))
power = lm(log(Species) ~ log(Elevation), gala)
predictions = exp(predict(power, data.frame(Elevation = x), interval = "prediction"))
plot(Species ~ Elevation, gala, main = "Log Transformation", ylim = range(predictions),

pch = 16)
lines(predictions[, 1] ~ x, col = 4, lty = 2, lwd = 2)
polygon(c(x, rev(x)), c(predictions[, 2], rev(predictions[, 3])), border = NA,

col = rgb(0, 0, 1, 0.25))
power = lm(Speciesˆ(1/3) ~ log(Elevation), gala)
predictions = predict(power, data.frame(Elevation = x), interval = "prediction")ˆ3
plot(Species ~ Elevation, gala, main = "Cube Root Transformation", ylim = range(predictions),

pch = 16)
lines(predictions[, 1] ~ x, col = 4, lty = 2, lwd = 2)
polygon(c(x, rev(x)), c(predictions[, 2], rev(predictions[, 3])), border = NA,

col = rgb(0, 0, 1, 0.25))

20

0 500 1000

0
10

00
20

00
30

00

Log Transformation

Elevation

S
pe

ci
es

0 500 1000

0
20

0
40

0
60

0

Cube Root Transformation

Elevation
S

pe
ci

es
Next, we illustrate the Box-Cox transformation on the pipeline data set from the faraway package. The resulting
regression line and its corresponding prediction region don’t appear to capture the trend in the response variable
very well, and the variation in the standardized residuals again appears to increase proportionally to the fitted
values, which is a clear sign of heteroscedasticity. The 95% asymptotic CI for λ ranges from 0.36 to 0.68, so a
square root transformation of the response variable would be most appropriate.

fit = lm(Lab ~ Field, pipeline)
Y = fit$model[, 1]
X = model.matrix(fit)[, -1]
x = seq(min(X), max(X), 0.1)
predictions = predict(fit, data.frame(Field = x), interval = "prediction")
plot(Lab ~ Field, pipeline, ylim = range(predictions), pch = 16)
lines(predictions[, 1] ~ x, col = 2, lty = 2, lwd = 2)
polygon(c(x, rev(x)), c(predictions[, 2], rev(predictions[, 3])), border = NA,

col = rgb(1, 0, 0, 0.25))

21

20 40 60 80

0
20

60
10

0

Field

La
b

plot(fit$fitted.values, rstandard(fit), xlab = "Fitted Values", ylab = "Standardized Residuals",
pch = 16)

abline(h = 0, col = 2, lty = 2, lwd = 2)

20 40 60 80 100

−
3

−
2

−
1

0
1

2
3

Fitted Values

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

BC = boxcox(fit, lambda)

22

−2 −1 0 1 2

−
35

0
−

25
0

−
15

0

λ

lo
g−

Li
ke

lih
oo

d

 95%

range(BC$x[BC$y > max(BC$y) - qchisq(alpha, 1, lower.tail = FALSE)/2])

[1] 0.36 0.68

After applying the suggested square root transformation, the new residuals vs. fitted plot suggests that the
relationship between the predictor and the response variable is no longer linear.

power = lm(sqrt(Lab) ~ Field, pipeline)
predictions = predict(power, data.frame(Field = x), interval = "prediction")ˆ2
plot(Lab ~ Field, pipeline, ylim = range(predictions), pch = 16)
lines(predictions[, 1] ~ x, col = 2, lty = 2, lwd = 2)
polygon(c(x, rev(x)), c(predictions[, 2], rev(predictions[, 3])), border = NA,

col = rgb(1, 0, 0, 0.25))

20 40 60 80

0
50

10
0

15
0

Field

La
b

plot(power$fitted.values, rstandard(power), xlab = "Fitted Values", ylab = "Standardized Residuals",
pch = 16)

23

abline(h = 0, col = 2, lty = 2, lwd = 2)

4 6 8 10

−
3

−
1

0
1

2
3

Fitted Values

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

Since the predictor is measured in the same units of measurement as the response variable, we attempt to
simultaneously apply the same power transformation on both the response variable and the predictor. We fit the
linear regression model Y

(λ)
i = β0 +β1X

(λ)
i +εi for a range of λ values from −2 to 2 and calculate the corresponding

values of the profile log-likelihood. The resulting 95% asymptotic CI for λ ranges from −0.13 to 0.26. Since λ = 0
lies within this CI, we conclude that a log transformation of both the response and the predictor variable would be
most appropriate.

for (i in 1:401) {
if (lambda[i] == 0) {

Ypower = log(Y)
Xpower = log(X)

} else {
Ypower = (Yˆlambda[i] - 1)/lambda[i]
Xpower = (Xˆlambda[i] - 1)/lambda[i]

}
power = lm(Ypower ~ Xpower)
loglik[i] = logLik(power)[1] + (lambda[i] - 1) * sum(log(Y))

}
CI = range(lambda[loglik > max(loglik) - qchisq(alpha, 1, lower.tail = FALSE)/2])
print(CI)

[1] -0.13 0.26

plot(lambda, loglik, "l", xlab = expression(lambda), ylab = "Profile Log-Likelihood")
abline(h = max(loglik) - qchisq(alpha, 1, lower.tail = FALSE)/2, lty = 2)
abline(v = CI, lty = 2)

24

−2 −1 0 1 2

−
50

0
−

40
0

λ

P
ro

fil
e

Lo
g−

Li
ke

lih
oo

d

Since we have used a log-transformation on the response variable, we have to exponentiate any predictions we make
in order to predict the response variable on its original scale. We observe that the resulting regression line and
its corresponding prediction region appear to be doing a much better job of capturing the trend in the response
variable than the original regression line, and the heteroscedasticity in the standardized residuals appears to have
been eliminated.

power = lm(log(Lab) ~ log(Field), pipeline)
predictions = exp(predict(power, data.frame(Field = x), interval = "prediction"))
plot(Lab ~ Field, pipeline, ylim = range(predictions), pch = 16)
lines(predictions[, 1] ~ x, col = 4, lty = 2, lwd = 2)
polygon(c(x, rev(x)), c(predictions[, 2], rev(predictions[, 3])), border = NA,

col = rgb(0, 0, 1, 0.25))

20 40 60 80

0
20

60
10

0
14

0

Field

La
b

plot(power$fitted.values, rstandard(power), xlab = "Fitted Values", ylab = "Standardized Residuals",
pch = 16)

abline(h = 0, col = 2, lty = 2, lwd = 2)

25

2.0 2.5 3.0 3.5 4.0 4.5

−
2

−
1

0
1

2

Fitted Values

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

Bootstrap

The least squares method leads to unbiased estimates of the regression coefficients without any distributional
assumption on the error terms. On the other hand, accurate estimation of the residual variance and the standard
errors of the coefficient estimators hinges on the assumptions of normality, homoscedasticity and independence of
the error terms. In cases where some of these assumptions are somehow violated, the bootstrap method presents a
viable non-parametric or semi-parametric alternative.

Suppose we are interested in the linear model Y = Xβ + ε, where X ∈ Rn×p, β ∈ Rp and ε ∼ Nn

(
0n, σ2In

)
. The

semi-parametric bootstrap approach is also referred to as bootstrapping the residuals.

Algorithm 1.1 Semi-Parametric Bootstrap
Input: Random sample (Y, X) and bootstrap sample size nboot.

1: We calculate the least squares estimate β̂ of the regression coefficient β and the residual vector ε̂ = Y − Xβ̂.

2: For k = 1, 2, . . . , nboot, we iterate the following steps:

i: We take a bootstrap sample ε̂(k) with replacement from the residual vector ε̂;

ii: We define the bootstrapped response variable Y (k) = Xβ̂ + ε̂(k);

iii: We regress Y (k) on X and calculate the bootstrapped least squares estimate β̂(k) of β.

3: We calculate the sample standard deviation of the vector of bootstrapped least squares estimates. This is a
valid estimate of the standard error of β̂.

Output: Vector of bootstrapped least squares estimates and its sample standard deviation.

It should be noted that the semi-parametric bootstrap approach still assumes that the standard errors are
homoscedastic and independent. If those assumptions are also in doubt, then it is better to adopt a fully
non-parametric bootstrap approach.

Now, we illustrate this semi-parametric bootstrap approach on simulated data. First, we simulate a sample of size

26

n = 1000 with p = 2 predictors distributed in the following way:[
X1

X2

]
∼ N2

([
0
0

]
,

[
3 1
1 2

])
.

The effect of the first predictor on the response variable is 2, while the effect of the second predictor is 3. Then, we
take a sample Y of size n = 1000 from this linear regression model with σ2 = 100.

library(MASS)
library(xtable)
n = 1000
p = 2
beta = c(2, 3)
X = mvrnorm(n, numeric(p), matrix(c(3, 1, 1, 2), p))
Y = X %*% beta + rnorm(n, sd = 10)
fit = lm(Y ~ X)
betahat = fit$coefficients
residuals = fit$residuals
print(xtable(summary(fit)), comment = FALSE)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.6880 0.3021 2.28 0.0230

X1 2.0332 0.1870 10.87 0.0000
X2 2.8289 0.2285 12.38 0.0000

First, we take nboot = 10000 bootstrapped residual samples and calculate the corresponding bootstrapped response
variables. Then, we calculate the bootstrapped least squares estimates of β and their corresponding standard errors.
Finally, we calculate the medians of the bootstrapped least squares estimates, the medians of the bootstrapped
standard errors and the standard deviations of the bootstrapped least squares estimates. We observe that the
medians of the bootstrapped least squares estimates lie very close to the estimated regression coefficients. We can
also see that the standard deviations of the bootstrapped least squares estimates are very close to the medians of
the bootstrapped standard errors, which is a sign that normal linear regression accurately estimates the magnitude
of the standard errors. This is not surprising, since none of the assumptions of normal linear regression are violated
in this simulated data set.

nboot = 10000
betaboot = matrix(0, nboot, p)
SEboot = matrix(0, nboot, p)
boot = matrix(0, p, 3)
rownames(boot) = colnames(X)[-1]
colnames(boot) = c("Median Bootstrap Coefficient", "Median Bootstrap SE", "SD of Bootstrap Coefficients")
for (i in 1:nboot) {

Yboot = fit$fitted.values + sample(residuals, replace = TRUE)
bootstrap = lm(Yboot ~ X)
betaboot[i,] = bootstrap$coefficients[-1]

27

SEboot[i,] = summary(bootstrap)$coefficients[-1, 2]
}
boot[, 1] = apply(betaboot, 2, median)
boot[, 2] = apply(SEboot, 2, median)
boot[, 3] = apply(betaboot, 2, sd)
print(xtable(boot, digits = c(0, rep(4, 3))), comment = FALSE)

Median Bootstrap Coefficient Median Bootstrap SE SD of Bootstrap Coefficients
1 2.0310 0.1867 0.1862
2 2.8333 0.2281 0.2256

par(mfrow = c(1, 2))
hist(SEboot[, 1], "FD", freq = FALSE, main = NA, xlab = expression(X[1]))
abline(v = boot[1, 3], col = 2, lty = 2, lwd = 2)
hist(SEboot[, 2], "FD", freq = FALSE, main = NA, xlab = expression(X[2]))
abline(v = boot[2, 3], col = 2, lty = 2, lwd = 2)

X1

D
en

si
ty

0.170 0.185 0.200

0
20

40
60

80

X2

D
en

si
ty

0.21 0.23

0
20

40
60

80

The fully non-parametric approach makes absolutely no distributional assumptions on the regression standard
errors, so it is valid under any setting.

Algorithm 1.2 Non-Parametric Bootstrap
Input: Random sample (Y, X) and bootstrap sample size nboot.

1: For k = 1, 2, . . . , nboot, we iterate the following steps:

i: We take a bootstrap sample
(
Y (k), X(k)) with replacement from the sample (Y, X);

ii: We regress Y (k) on X(k) and calculate the bootstrapped least squares estimate β̂(k) of β.

2: We calculate the sample standard deviation of the vector of bootstrapped least squares estimates.

Output: Vector of bootstrapped least squares estimates and its sample standard deviation.

28

We apply this fully non-parametric approach on the same simulated data set. We can see that the standard
deviations of the bootstrapped least squares estimates are very close to the medians of the bootstrapped standard
errors, which is a sign that normal linear regression accurately estimates the magnitude of the standard errors. Since
none of the normal linear regression assumptions are actually violated, the preceding semi-parametric approach
performs slightly better than this fully non-parametric approach for the same number of bootstrapped samples.

for (i in 1:nboot) {
bootstrap = lm(Y ~ X, subset = sample(n, replace = TRUE))
betaboot[i,] = bootstrap$coefficients[-1]
SEboot[i,] = summary(bootstrap)$coefficients[-1, 2]

}
boot[, 1] = apply(betaboot, 2, median)
boot[, 2] = apply(SEboot, 2, median)
boot[, 3] = apply(betaboot, 2, sd)
print(xtable(boot, digits = c(0, rep(4, 3))), comment = FALSE)

Median Bootstrap Coefficient Median Bootstrap SE SD of Bootstrap Coefficients
1 2.0306 0.1869 0.1879
2 2.8300 0.2283 0.2320

par(mfrow = c(1, 2))
hist(SEboot[, 1], "FD", freq = FALSE, main = NA, xlab = expression(X[1]))
abline(v = boot[1, 3], col = 2, lty = 2, lwd = 2)
hist(SEboot[, 2], "FD", freq = FALSE, main = NA, xlab = expression(X[2]))
abline(v = boot[2, 3], col = 2, lty = 2, lwd = 2)

X1

D
en

si
ty

0.17 0.19 0.21

0
10

30
50

X2

D
en

si
ty

0.20 0.22 0.24 0.26

0
10

20
30

40
50

60

Afterwards, we consider applying these bootstrap approaches on the gala data set from the faraway package. We
remark the existence of one extremely influential point as well as the fact that the variation of the standardized
residuals increases proportionally with the fitted values. Thus, we expect that the usual parametric standard error
estimates are going to be extremely unreliable.

29

library(faraway)
library(qqconf)
n = dim(gala)[1]
p = 4
fit = lm(Species ~ Area + Elevation + Nearest + Adjacent, gala)
betahat = fit$coefficients
residuals = fit$residuals
print(xtable(summary(fit)), comment = FALSE)

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.1792 18.1098 -0.01 0.9922

Area -0.0249 0.0225 -1.11 0.2796
Elevation 0.3254 0.0537 6.06 0.0000

Nearest -0.7273 0.8264 -0.88 0.3872
Adjacent -0.0786 0.0175 -4.50 0.0001

par(mfrow = c(1, 3))
plot(fit$fitted.values, rstandard(fit), xlab = "Fitted Values", ylab = "Standardized Residuals",

pch = 16)
abline(h = 0, col = 2, lty = 2, lwd = 2)
qq_conf_plot(rstandard(fit), qnorm, dparams = list(median(rstandard(fit)), mad(rstandard(fit))),

points_params = list(pch = 16))
plot(fit, 4)

0 100 200 300 400

−
4

−
3

−
2

−
1

0
1

2
3

Fitted Values

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

−1.5 −0.5 0.5 1.0

−
4

−
3

−
2

−
1

0
1

2
3

Expected quantiles

O
bs

er
ve

d
qu

an
til

es

0 5 10 15 20 25 30

0
20

40
60

80

Obs. number

C
oo

k'
s

di
st

an
ce

Cook's distance

Isabela

Fernandina SantaCruz

We start with the semi-parametric approach of bootstrapping the residuals. We can see that the standard deviations
of the bootstrapped least squares estimates are very close to the medians of the bootstrapped standard errors,

30

which is surprising considering the large deviations from the assumptions of normal linear regression. This is a
sign that the semi-parametric approach has completely failed at capturing the true variability in the least squares
estimator, so we should abandon it and move on to the fully non-parametric approach.

betaboot = matrix(0, nboot, p)
SEboot = matrix(0, nboot, p)
boot = matrix(0, p, 3)
rownames(boot) = names(betahat)[-1]
colnames(boot) = c("Median Bootstrap Coefficient", "Median Bootstrap SE", "SD of Bootstrap Coefficients")
for (i in 1:nboot) {

Yboot = fit$fitted.values + sample(residuals, replace = TRUE)
bootstrap = lm(Yboot ~ Area + Elevation + Nearest + Adjacent, gala)
betaboot[i,] = bootstrap$coefficients[-1]
SEboot[i,] = summary(bootstrap)$coefficients[-1, 2]

}
boot[, 1] = apply(betaboot, 2, median)
boot[, 2] = apply(SEboot, 2, median)
boot[, 3] = apply(betaboot, 2, sd)
print(xtable(boot, digits = c(0, rep(4, 3))), comment = FALSE)

Median Bootstrap Coefficient Median Bootstrap SE SD of Bootstrap Coefficients
Area -0.0259 0.0201 0.0204

Elevation 0.3245 0.0478 0.0491
Nearest -0.7834 0.7368 0.7663

Adjacent -0.0794 0.0156 0.0159

par(mfrow = c(1, 2))
hist(SEboot[, 1], "FD", freq = FALSE, main = NA, xlab = rownames(boot)[1])
abline(v = boot[1, 3], col = 2, lty = 2, lwd = 2)
hist(SEboot[, 2], "FD", freq = FALSE, main = NA, xlab = rownames(boot)[2])
abline(v = boot[2, 3], col = 2, lty = 2, lwd = 2)

31

Area

D
en

si
ty

0.010 0.025

0
20

40
60

80
10

0

Elevation

D
en

si
ty

0.02 0.05 0.08

0
10

20
30

40

hist(SEboot[, 3], "FD", freq = FALSE, main = NA, xlab = rownames(boot)[3])
abline(v = boot[3, 3], col = 2, lty = 2, lwd = 2)
hist(SEboot[, 4], "FD", freq = FALSE, main = NA, xlab = rownames(boot)[4])
abline(v = boot[4, 3], col = 2, lty = 2, lwd = 2)

Nearest

D
en

si
ty

0.4 0.8 1.2

0.
0

1.
0

2.
0

Adjacent

D
en

si
ty

0.005 0.020

0
20

60
10

0

Then, we apply the non-parametric approach of bootstrapping the entire sample. We can now see that the standard
deviations of the bootstrapped least squares estimates massively deviate from the medians of the bootstrapped
standard errors. More precisely, we observe that normal linear regression severely underestimates the true standard
errors of our least squares estimators. On the other hand, the medians of the bootstrapped least squares estimates
lie really close to the estimated regression coefficients, even though the assumptions of normal linear regression are
violated.

for (i in 1:nboot) {
bootstrap = lm(Species ~ Area + Elevation + Nearest + Adjacent, gala, sample(n,

replace = TRUE))
betaboot[i,] = bootstrap$coefficients[-1]

32

SEboot[i,] = summary(bootstrap)$coefficients[-1, 2]
}
boot[, 1] = apply(betaboot, 2, median)
boot[, 2] = apply(SEboot, 2, median)
boot[, 3] = apply(betaboot, 2, sd)
print(xtable(boot, digits = c(0, rep(4, 3))), comment = FALSE)

Median Bootstrap Coefficient Median Bootstrap SE SD of Bootstrap Coefficients
Area -0.0116 0.0247 0.1720

Elevation 0.2768 0.0499 0.1221
Nearest -0.6172 0.6644 1.0351

Adjacent -0.0657 0.0164 0.0838

par(mfrow = c(1, 2))
hist(SEboot[, 1], "FD", freq = FALSE, main = NA, xlab = rownames(boot)[1])
abline(v = boot[1, 3], col = 2, lty = 2, lwd = 2)
hist(SEboot[, 2], "FD", freq = FALSE, main = NA, xlim = c(min(SEboot[, 2]),

boot[2, 3]), xlab = rownames(boot)[2])
abline(v = boot[2, 3], col = 2, lty = 2, lwd = 2)

Area

D
en

si
ty

0.00 0.10 0.20

0
10

20
30

40

Elevation

D
en

si
ty

0.02 0.06 0.10

0
5

10
20

30

hist(SEboot[, 3], "FD", freq = FALSE, main = NA, xlab = rownames(boot)[3])
abline(v = boot[3, 3], col = 2, lty = 2, lwd = 2)
hist(SEboot[, 4], "FD", freq = FALSE, main = NA, xlab = rownames(boot)[4])
abline(v = boot[4, 3], col = 2, lty = 2, lwd = 2)

33

Nearest

D
en

si
ty

0 1 2 3 4 5 6 7

0.
0

0.
5

1.
0

1.
5

Adjacent

D
en

si
ty

0.0 0.2 0.4 0.6

0
10

30
50

Permutation Tests

The usual test statistics for linear regression heavily rely on the assumption of normality of the response variable.
In cases where this assumption is somehow violated, permutation tests present a viable non-parametric alternative.
Suppose we are interested in the linear regression model Yi = β0 + β1Xi1 + · · · + βpXip + εi, where εi ∼ N

(
0, σ2)

are independent. First, we want to perform an overall test of statistical significance H0 : β1 = β2 = · · · = βp = 0
vs. every possible alternative. The standard approach is to use the overall F test of statistical significance to
draw inference. In the absence of normality, we need to resort to a non-parametric approach. Under the null
hypothesis, we observe that the original sample {(Yi, Xi1, . . . , Xip)} has the same distribution as a permuted sample{(

Yπ(i), Xi1, . . . , Xip

)}
for any random permutation π : {1, 2, . . . , n} → {1, 2, . . . , n}.

Algorithm 1.3 Permutation F test of Overall Statistical Significance
Input: Random sample (Y, X) and permutation sample size nperm.

1: We calculate the observed value fobs of the F test statistic on the original sample (Y, X).

2: For k = 1, 2, . . . , nperm, we iterate the following steps:

i: We take a random permutation Y (k) of the response variable Y ;

ii: We regress Y (k) on X1, X2, . . . , Xp;

iii: We calculate the observed value fperm
k of the F test statistic on the permuted sample

(
Y (k), X

)
.

3: We can estimate the p-value of the F test as follows:

p-value =
1 +

∑nperm
k=1 1{fperm

k
>fobs}

1 + nperm
.

Output: Estimated F test p-value.

Although this approach makes use of the exact same test statistic as the parametric approach, the calculation of
the p-value makes absolutely no distributional assumptions on the data, so it constitutes a fully non-parametric
approach.

34

Now, we illustrate this permutation test on simulated data. First, we simulate p = 5 normally distributed predictors
X1, X2, . . . , Xp of size n = 100 and normalize them so that their Euclidean norm is equal to 1. The effect of all
p predictors on the response variable is equal to 1. Then, we take a sample Y of size n = 100 from this linear
regression model with σ2 = 1.

n = 100
p = 5
X = matrix(rnorm(n * p), n)
X = t(t(X)/sqrt(colSums(Xˆ2)))
beta = rep(1, p)
Y = X %*% beta + rnorm(n)
fit = lm(Y ~ X)

To start with, we calculate the observed value of the F test statistic and the corresponding p-value yielded by
the usual parametric approach, which assumes that F ∼ Fp,n−p−1 under the null hypothesis. Then, we take
nperm = 10000 random permutations of the response variable and calculate the observed value of the F test statistic
for each of them. The estimated p-value of this approach is almost equal to the p-value of the parametric approach,
since there is no violation of the normality assumption in the simulated data set. Furthermore, the distribution of
the permuted F statistic values closely agrees with the theoretical Fp,n−p−1 distribution of the parametric approach
under the null hypothesis.

alpha = 0.05
f = as.vector(summary(fit)$fstatistic)[1]
pf(f, p, n - p - 1, lower.tail = FALSE)

[1] 0.02567136

nperm = 10000
Fperm = numeric(nperm)
for (i in 1:nperm) {

Yperm = sample(Y)
perm = lm(Yperm ~ X)
Fperm[i] = summary(perm)$fstatistic[1]

}
print((1 + sum(Fperm > f))/(1 + nperm))

[1] 0.02409759

hist(Fperm, "FD", freq = FALSE, main = NA, xlab = "Permuted F Statistics")
curve(df(x, p, n - p - 1), add = TRUE, col = 2, lty = 2, lwd = 2)
abline(v = qf(1 - alpha, p, n - p - 1), col = 4, lty = 2, lwd = 2)
abline(v = quantile(Fperm, 1 - alpha), col = 7, lty = 2, lwd = 2)
abline(v = f, lty = 2, lwd = 2)
legend("topright", c("Theoretical Distribution", "Theoretical Quantile", "Empirical Quantile",

"Observed Statistic"), col = c(2, 4, 7, 1), lty = rep(2, 4), lwd = rep(2,
4), cex = 0.5)

35

Permuted F Statistics

D
en

si
ty

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

Theoretical Distribution
Theoretical Quantile
Empirical Quantile
Observed Statistic

Afterwards, we endeavor to apply the same logic to a test of statistical significance for a single regression coefficient,
let’s say H0 : β1 = 0 vs. H1 : β1 ̸= 0. Before we can define a permuted response variable, we first need to regress
out the effect of all other predictors except for X1, since their effect on the response variable is generally non-zero
under the null hypothesis.

Algorithm 1.4 Permutation t Test of Statistical Significance
Input: Random sample (Y, X) and permutation sample size nperm.

1: We calculate the observed value tobs of the t test statistic for the statistical significance of β1 on the original
sample (Y, X).

2: We regress Y on X2, X3, . . . , Xp. We calculate the vectors Ŷ of fitted values and ε̂ of residuals from this linear
regression model.

3: For k = 1, 2, . . . , nperm, we iterate the following steps:

i: We take a random permutation ε̂(k) of the residual vector ε̂;

ii: We define the permuted response variable Y (k) = Ŷ + ε̂(k);

iii: We regress Y (k) on X1, X2, . . . , Xp;

iv: We calculate the observed value tperm
k of the t test statistic for the statistical significance of β1 on the

permuted sample
(
Y (k), X

)
.

4: We can estimate the p-value of the t test as follows:

p-value =
1 +

∑nperm
k=1 1{|tperm

k |>|tobs|}

1 + nperm
.

Output: Estimated t test p-value for β1.

Now, we apply this permutation test on the same simulated data set. To start with, we calculate the observed
value of the t test statistic and the corresponding p-value yielded by the parametric approach, which assumes
that t ∼ tn−p−1 under the null hypothesis H0 : β1 = 0. Then, we take nperm = 10000 random permutations of the
response variable according to this approach and calculate the observed value of the t test statistic for each of them.

36

The estimated p-value of this approach is almost equal to the p-value of the parametric approach since there is no
violation of the normality assumption in the simulated data set. Furthermore, the distribution of the permuted t

statistic values closely agrees with the theoretical tn−p−1 distribution of the parametric approach under the null
hypothesis.

t = summary(fit)$coefficients[2, 3]
print(2 * pt(abs(t), n - p - 1, lower.tail = FALSE))

[1] 0.3412679

aux = lm(Y ~ X[, -1])
Yhat = aux$fitted.values
Yres = aux$residuals
tperm = numeric(nperm)
for (i in 1:nperm) {

Yperm = Yhat + sample(Yres)
perm = lm(Yperm ~ X)
tperm[i] = summary(perm)$coefficients[2, 3]

}
print((1 + sum(abs(tperm) > abs(t)))/(1 + nperm))

[1] 0.3465653

hist(tperm, "FD", freq = FALSE, main = NA, xlab = "Permuted t Statistics")
curve(dt(x, n - p - 1), add = TRUE, col = 2, lty = 2, lwd = 2)
abline(v = qt(c(alpha/2, 1 - alpha/2), n - p - 1), col = 4, lty = 2, lwd = 2)
abline(v = quantile(tperm, c(alpha/2, 1 - alpha/2)), col = 7, lty = 2, lwd = 2)
abline(v = t, lty = 2, lwd = 2)
legend("topright", c("Theoretical Distribution", "Theoretical Quantiles", "Empirical Quantiles",

"Observed Statistic"), col = c(2, 4, 7, 1), lty = rep(2, 4), lwd = rep(2,
4), cex = 0.5)

Permuted t Statistics

D
en

si
ty

−2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4 Theoretical Distribution

Theoretical Quantiles
Empirical Quantiles
Observed Statistic

37

Afterwards, we apply these permutation tests on the gala data set from the faraway package. We remark the
existence of some extreme outliers which clash with the normality assumption. Thus, we expect that the usual
parametric testing approaches are going to be extremely unreliable.

library(faraway)
library(qqconf)
n = dim(gala)[1]
p = 4
fit = lm(Species ~ Area + Nearest + Scruz + Adjacent, gala)
Y = fit$model[, 1]
X = model.matrix(fit)[, -1]
par(mfrow = c(1, 3))
plot(fit$fitted.values, rstandard(fit), xlab = "Fitted Values", ylab = "Standardized Residuals",

pch = 16)
abline(h = 0, col = 2, lty = 2, lwd = 2)
qq_conf_plot(rstandard(fit), qnorm, dparams = list(median(rstandard(fit)), mad(rstandard(fit))),

points_params = list(pch = 16))
plot(fit, 4)

0 100 200 300 400

−
4

−
2

0
2

Fitted Values

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

−1.5 −1.0 −0.5 0.0 0.5

−
4

−
2

0
2

Expected quantiles

O
bs

er
ve

d
qu

an
til

es

0 5 10 15 20 25 30

0
10

20
30

40
50

60

Obs. number

C
oo

k'
s

di
st

an
ce

Cook's distance

Isabela

Fernandina

SanCristobal

We start with the overall F test of statistical significance. Unsurprisingly, the estimated p-value of the permutation
approach is far off from the p-value computed on the basis of the theoretical parametric distribution. Additionally,
the distribution of the permuted F statistic values, which is an approximation of the true null distribution of
the test statistic, has a significantly different shape from the theoretical Fp,n−p−1 distribution. In particular, the
theoretical distribution has a much lighter tail than the empirical distribution, which implies that the parametric
approach has a much higher than nominal type I error.

f = as.vector(summary(fit)$fstatistic)[1]
pf(f, p, n - p - 1, lower.tail = FALSE)

38

[1] 0.006887787

for (i in 1:nperm) {
Yperm = sample(Y)
perm = lm(Yperm ~ X)
Fperm[i] = summary(perm)$fstatistic[1]

}
print((1 + sum(Fperm > f))/(1 + nperm))

[1] 0.03089691

hist(Fperm, "FD", freq = FALSE, main = NA, xlab = "Permuted F Statistics")
curve(df(x, p, n - p - 1), add = TRUE, col = 2, lty = 2, lwd = 2)
abline(v = qf(1 - alpha, p, n - p - 1), col = 4, lty = 2, lwd = 2)
abline(v = quantile(Fperm, 1 - alpha), col = 7, lty = 2, lwd = 2)
abline(v = f, lty = 2, lwd = 2)
legend("topright", c("Theoretical Distribution", "Theoretical Quantile", "Empirical Quantile",

"Observed Statistic"), col = c(2, 4, 7, 1), lty = rep(2, 4), lwd = rep(2,
4), cex = 0.5)

Permuted F Statistics

D
en

si
ty

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

Theoretical Distribution
Theoretical Quantile
Empirical Quantile
Observed Statistic

Then, we perform a test of statistical significance for the area predictor. Unsurprisingly, the estimated p-value
of the permutation approach is far off from the p-value computed on the basis of the theoretical parametric
distribution. Additionally, the distribution of the permuted t statistic values, which is an approximation of the
true null distribution of the test statistic, has a wildly different shape from the theoretical tn−p−1 distribution. In
particular, the theoretical distribution has a much lighter right tail and a much heavier left tail than the empirical
distribution, which implies that the parametric approach has a poorly calibrated type I error as well a severe loss
in power compared to the permutation approach.

t = summary(fit)$coefficients[2, 3]
print(2 * pt(abs(t), n - 2, lower.tail = FALSE))

[1] 0.0004030351

39

aux = lm(Y ~ X[, -1])
Yhat = aux$fitted.values
Yres = aux$residuals
for (i in 1:nperm) {

Yperm = Yhat + sample(Yres)
perm = lm(Yperm ~ X)
tperm[i] = summary(perm)$coefficients[2, 3]

}
print((1 + sum(abs(tperm) > abs(t)))/(1 + nperm))

[1] 0.00829917

hist(tperm, "FD", freq = FALSE, main = NA, xlab = "Permuted t Statistics")
curve(dt(x, n - p - 1), add = TRUE, col = 2, lty = 2, lwd = 2)
abline(v = qt(c(alpha/2, 1 - alpha/2), n - p - 1), col = 4, lty = 2, lwd = 2)
abline(v = quantile(tperm, c(alpha/2, 1 - alpha/2)), col = 7, lty = 2, lwd = 2)
abline(v = t, lty = 2, lwd = 2)
legend("topright", c("Theoretical Distribution", "Theoretical Quantiles", "Empirical Quantiles",

"Observed Statistic"), col = c(2, 4, 7, 1), lty = rep(2, 4), lwd = rep(2,
4), cex = 0.5)

Permuted t Statistics

D
en

si
ty

−2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

Theoretical Distribution
Theoretical Quantiles
Empirical Quantiles
Observed Statistic

Missing Data

Any data entries whose response value is missing from a data set are generally discarded for the purposes of
statistical analysis. On the other hand, the handling of missing values in the predictors of a linear regression model
depends on the type of missingness. There are 3 main types of missingness:

• Missing completely at random: For any predictor j, values are missing uniformly at random with
probability pj .

• Missing at random: For any predictor j, value xij is missing with probability pij which is a function of

40

other observed predictor values.

• Missing not at random: For any predictor j, value xij is missing with probability pij which is a function
of unobserved data.

There are 4 main ways of handling missing values in data:

• Discarding: Ignore all data entries with a missing value in at least one predictor, and perform inference
using the rest of the data set.

• Mean Imputation: Calculate the sample average xj of Xj by ignoring the missing values, and substitute
any missing values xij by xj .

• Deterministic Regression Imputation: Regress Xj on the rest of the predictors, and substitute any
missing values xij by the point predictions given by the fitted model.

• Stochastic Regression Imputation: Regress Xj on the rest of the predictors, and substitute any missing
values xij by simulated values from the fitted model.

If predictor values are missing completely at random, then discarding data entries with at least one missing value
is a viable option. However, as the number of available predictors increases, the probability of a data entry not
having any missing value becomes really small, even if the individual probabilities of missingness for each predictor
are really small. Hence, some imputation method needs to be applied when the fraction of data entries with at
least one missing value is fairly large.

If predictor values are missing at random, then discarding data entries with at least one missing value may lead to
severe estimation bias, so it is important to utilize some method of imputation. Mean imputation has the drawback
of not preserving the initial relationship among predictors. On the other hand, deterministic regression imputation
may significantly increase the collinearity among predictors. Stochastic regression imputation solves this problem
by adding some random noise to the predictions made by the auxiliary model.

If predictor values are missing not at random, then any approach may lead to severely biased results. The only
surefire way of dealing with this type of missingness is to make sure that this phenomenon doesn’t occur at any
point in the data collection process.

We illustrate these methods on the sat data set from the faraway package. We want to estimate the effect of expend
and takers on the average total SAT scores.

library(faraway)
library(xtable)
n = dim(sat)[1]
fit = lm(total ~ expend + takers, sat)
betahat = fit$coefficients[-1]
print(xtable(cor(sat[, c(1, 4, 7)])), comment = FALSE)

expend takers total
expend 1.00 0.59 -0.38
takers 0.59 1.00 -0.89

total -0.38 -0.89 1.00

41

First, we introduce missing values completely at random with probability 0.1 into the expend variable. We repeat
this experiment 1000 times, handle the missing values in 4 different ways and calculate the resulting regression
coefficients.

nsim = 1000
betasim = matrix(0, nsim, 8)
for (i in 1:nsim) {

Xmiss = sat$expend
Xmiss[rbinom(n, 1, 0.1) == 1] = NA
miss = lm(total ~ Xmiss + takers, sat)
betasim[i, 1:2] = miss$coefficients[-1]
Ximpute = Xmiss
Ximpute[is.na(Xmiss)] = mean(Xmiss, na.rm = TRUE)
miss = lm(total ~ Ximpute + takers, sat)
betasim[i, 3:4] = miss$coefficients[-1]
impute = lm(Xmiss ~ takers, sat)
Ximpute[is.na(Xmiss)] = predict(impute, data.frame(takers = sat$takers[is.na(Xmiss)]))
miss = lm(total ~ Ximpute + takers, sat)
betasim[i, 5:6] = miss$coefficients[-1]
Ximpute[is.na(Xmiss)] = predict(impute, data.frame(takers = sat$takers[is.na(Xmiss)])) +

rnorm(sum(is.na(Xmiss)), sd = summary(impute)$sigma)
miss = lm(total ~ Ximpute + takers, sat)
betasim[i, 7:8] = miss$coefficients[-1]

}

We compare the histograms of the estimated regression coefficients after introduction of the missing values against
the initially estimated regression coefficients without missing values. When a fairly small fraction of values are
missing completely at random, we can see that any method of dealing with these missing values yields satisfactory
results. The histograms of the estimated regression coefficients display low variation, and the initially estimated
regression coefficients lie close to the modes of the histograms.

par(mfrow = c(1, 2))
hist(betasim[, 1], "FD", freq = FALSE, main = NA, xlab = "Expend")
abline(v = betahat[1], col = 2, lty = 2, lwd = 2)
hist(betasim[, 2], "FD", freq = FALSE, main = NA, xlab = "Takers")
abline(v = betahat[2], col = 2, lty = 2, lwd = 2)
mtext("Discarding", line = -2, outer = TRUE, font = 2)

42

Expend

D
en

si
ty

8 10 14 18

0.
00

0.
10

0.
20

0.
30

Takers

D
en

si
ty

−3.2 −3.0 −2.8 −2.6

0
1

2
3

4
5

6

Discarding

par(mfrow = c(1, 2))
hist(betasim[, 3], "FD", freq = FALSE, main = NA, xlab = "Expend")
abline(v = betahat[1], col = 2, lty = 2, lwd = 2)
hist(betasim[, 4], "FD", freq = FALSE, main = NA, xlab = "Takers")
abline(v = betahat[2], col = 2, lty = 2, lwd = 2)
mtext("Mean Imputation", line = -2, outer = TRUE, font = 2)

Expend

D
en

si
ty

6 8 12 16

0.
0

0.
1

0.
2

0.
3

Takers

D
en

si
ty

−2.95 −2.80 −2.65

0
2

4
6

8

Mean Imputation

par(mfrow = c(1, 2))
hist(betasim[, 5], "FD", freq = FALSE, main = NA, xlab = "Expend")

43

abline(v = betahat[1], col = 2, lty = 2, lwd = 2)
hist(betasim[, 6], "FD", freq = FALSE, main = NA, xlab = "Takers")
abline(v = betahat[2], col = 2, lty = 2, lwd = 2)
mtext("Deterministic Regression Imputation", line = -2, outer = TRUE, font = 2)

Expend

D
en

si
ty

8 10 14 18

0.
00

0.
10

0.
20

0.
30

Takers

D
en

si
ty

−3.05 −2.90 −2.75
0

2
4

6
8

10
12

Deterministic Regression Imputation

par(mfrow = c(1, 2))
hist(betasim[, 7], "FD", freq = FALSE, main = NA, xlab = "Expend")
abline(v = betahat[1], col = 2, lty = 2, lwd = 2)
hist(betasim[, 8], "FD", freq = FALSE, main = NA, xlab = "Takers")
abline(v = betahat[2], col = 2, lty = 2, lwd = 2)
mtext("Stochastic Regression Imputation", line = -2, outer = TRUE, font = 2)

44

Expend

D
en

si
ty

5 10 15

0.
00

0.
10

0.
20

Takers
D

en
si

ty

−3.1 −2.9 −2.7 −2.5

0
2

4
6

Stochastic Regression Imputation

Then, we assume that values are missing in the expend variable as a function of the percentage of students taking
the SAT in each US state. More specifically, the probability that the daily public school expenditure of state i is
missing is equal to the percentage of students not taking the SAT in state i. Thus, states with a low percentage
of students taking the SAT have a high chance of not reporting their public school expenditure. We repeat
this experiment 1000 times, handle the missing values in 4 different ways and calculate the resulting regression
coefficients.

for (i in 1:nsim) {
Xmiss = sat$expend
Xmiss[rbinom(n, 1, 1 - sat$takers/100) == 1] = NA
miss = lm(total ~ Xmiss + takers, sat)
betasim[i, 1:2] = miss$coefficients[-1]
Ximpute = Xmiss
Ximpute[is.na(Xmiss)] = mean(Xmiss, na.rm = TRUE)
miss = lm(total ~ Ximpute + takers, sat)
betasim[i, 3:4] = miss$coefficients[-1]
impute = lm(Xmiss ~ takers, sat)
Ximpute[is.na(Xmiss)] = predict(impute, data.frame(takers = sat$takers[is.na(Xmiss)]))
miss = lm(total ~ Ximpute + takers, sat)
betasim[i, 5:6] = miss$coefficients[-1]
Ximpute[is.na(Xmiss)] = predict(impute, data.frame(takers = sat$takers[is.na(Xmiss)])) +

rnorm(sum(is.na(Xmiss)), sd = summary(impute)$sigma)
miss = lm(total ~ Ximpute + takers, sat)
betasim[i, 7:8] = miss$coefficients[-1]

}

When values are missing at random, the method of discarding data entries with at least one missing value leads

45

to histograms with extremely high variation, which indicates a general inability to recover the true effects of
the predictors on the response variable with just the fraction of available data. This is not surprising since the
estimation of the regression coefficients is essentially based only on the data from states with a high percentage of
students taking the SAT, while mostly ignoring the rest.

par(mfrow = c(1, 2))
hist(betasim[, 1], "FD", freq = FALSE, main = NA, xlab = "Expend")
abline(v = betahat[1], col = 2, lty = 2, lwd = 2)
hist(betasim[, 2], "FD", freq = FALSE, main = NA, xlab = "Takers")
abline(v = betahat[2], col = 2, lty = 2, lwd = 2)
mtext("Discarding", line = -2, outer = TRUE, font = 2)

Expend

D
en

si
ty

0 10 20 30 40

0.
00

0.
04

0.
08

Takers

D
en

si
ty

−4 −2 0 1

0.
0

0.
2

0.
4

0.
6

0.
8

Discarding

Mean imputation significantly dilutes the strong linear relationship between the 2 predictors. This leads to a falsely
confident estimation of the takers coefficient, while the original coefficient lies quite far off the range of estimated
coefficients.

par(mfrow = c(1, 2))
hist(betasim[, 3], "FD", freq = FALSE, main = NA, xlab = "Expend")
abline(v = betahat[1], col = 2, lty = 2, lwd = 2)
hist(betasim[, 4], "FD", freq = FALSE, main = NA, xlim = c(betahat[2], max(betasim[,

4])), xlab = "Takers")
abline(v = betahat[2], col = 2, lty = 2, lwd = 2)
mtext("Mean Imputation", line = -2, outer = TRUE, font = 2)

46

Expend

D
en

si
ty

5 15 25 35

0.
00

0.
04

0.
08

0.
12

Takers

D
en

si
ty

−2.8 −2.6

0
2

4
6

8

Mean Imputation

Regression imputation generally does a good job of estimating the original regression coefficients. Deterministic
regression imputation leads to more precise estimates, but significantly increases the collinearity between the 2
predictors. Stochastic regression imputation avoids this problem, but leads to significantly more noisy estimates of
the regression coefficients.

par(mfrow = c(1, 2))
hist(betasim[, 5], "FD", freq = FALSE, main = NA, xlab = "Expend")
abline(v = betahat[1], col = 2, lty = 2, lwd = 2)
hist(betasim[, 6], "FD", freq = FALSE, main = NA, xlab = "Takers")
abline(v = betahat[2], col = 2, lty = 2, lwd = 2)
mtext("Deterministic Regression Imputation", line = -2, outer = TRUE, font = 2)

47

Expend

D
en

si
ty

0 10 20 30 40

0.
00

0.
04

0.
08

Takers

D
en

si
ty

−3.5 −2.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Deterministic Regression Imputation

par(mfrow = c(1, 2))
hist(betasim[, 7], "FD", freq = FALSE, main = NA, xlab = "Expend")
abline(v = betahat[1], col = 2, lty = 2, lwd = 2)
hist(betasim[, 8], "FD", freq = FALSE, main = NA, xlab = "Takers")
abline(v = betahat[2], col = 2, lty = 2, lwd = 2)
mtext("Stochastic Regression Imputation", line = -2, outer = TRUE, font = 2)

Expend

D
en

si
ty

−5 0 5 10 20

0.
00

0.
04

0.
08

Takers

D
en

si
ty

−3.0 −2.5 −2.0

0.
0

1.
0

2.
0

Stochastic Regression Imputation

Lastly, we assume that values are missing in the takers variable as a function of itself. More specifically, the
probability that the percentage of students taking the SAT in state i is missing is equal to the percentage of
students not taking the SAT in state i. Thus, states with a low percentage of students taking the SAT have a high

48

chance of not reporting it. We repeat this experiment 1000 times, handle the missing values in 4 different ways and
calculate the resulting regression coefficients.

for (i in 1:nsim) {
Xmiss = sat$takers
Xmiss[rbinom(n, 1, 1 - sat$takers/100) == 1] = NA
miss = lm(total ~ expend + Xmiss, sat)
betasim[i, 1:2] = miss$coefficients[-1]
Ximpute = Xmiss
Ximpute[is.na(Xmiss)] = mean(Xmiss, na.rm = TRUE)
miss = lm(total ~ expend + Ximpute, sat)
betasim[i, 3:4] = miss$coefficients[-1]
impute = lm(Xmiss ~ expend, sat)
Ximpute[is.na(Xmiss)] = predict(impute, data.frame(expend = sat$expend[is.na(Xmiss)]))
miss = lm(total ~ expend + Ximpute, sat)
betasim[i, 5:6] = miss$coefficients[-1]
Ximpute[is.na(Xmiss)] = predict(impute, data.frame(expend = sat$takers[is.na(Xmiss)])) +

rnorm(sum(is.na(Xmiss)), sd = summary(impute)$sigma)
miss = lm(total ~ expend + Ximpute, sat)
betasim[i, 7:8] = miss$coefficients[-1]

}

When values are missing not at random, we can see that any method of dealing with these missing values fails to
provide satisfactory results. The histograms of estimated regression coefficients display very high variation, and
the initially estimated regression coefficients generally lie far off the modes of the histograms.

par(mfrow = c(1, 2))
hist(betasim[, 1], "FD", freq = FALSE, main = NA, xlab = "Expend")
abline(v = betahat[1], col = 2, lty = 2, lwd = 2)
hist(betasim[, 2], "FD", freq = FALSE, main = NA, xlab = "Takers")
abline(v = betahat[2], col = 2, lty = 2, lwd = 2)
mtext("Discarding", line = -2, outer = TRUE, font = 2)

49

Expend

D
en

si
ty

0 10 20 30 40

0.
00

0.
04

0.
08

Takers

D
en

si
ty

−3 −2 −1 0

0.
0

0.
2

0.
4

0.
6

0.
8

Discarding

par(mfrow = c(1, 2))
hist(betasim[, 3], "FD", freq = FALSE, main = NA, xlim = c(min(betasim[, 3]),

betahat[1]), xlab = "Expend")
abline(v = betahat[1], col = 2, lty = 2, lwd = 2)
hist(betasim[, 4], "FD", freq = FALSE, main = NA, xlab = "Takers")
abline(v = betahat[2], col = 2, lty = 2, lwd = 2)
mtext("Mean Imputation", line = -2, outer = TRUE, font = 2)

Expend

D
en

si
ty

−20 0 10

0.
00

0.
05

0.
10

0.
15

Takers

D
en

si
ty

−3 −1 1 3

0.
0

0.
2

0.
4

0.
6

Mean Imputation

50

par(mfrow = c(1, 2))
hist(betasim[, 5], "FD", freq = FALSE, main = NA, xlab = "Expend")
abline(v = betahat[1], col = 2, lty = 2, lwd = 2)
hist(betasim[, 6], "FD", freq = FALSE, main = NA, xlab = "Takers")
abline(v = betahat[2], col = 2, lty = 2, lwd = 2)
mtext("Deterministic Regression Imputation", line = -2, outer = TRUE, font = 2)

Expend

D
en

si
ty

−20 0 10 30

0.
00

0.
02

0.
04

0.
06

Takers

D
en

si
ty

−3 −2 −1 0

0.
0

0.
2

0.
4

0.
6

0.
8

Deterministic Regression Imputation

par(mfrow = c(1, 2))
hist(betasim[, 7], "FD", freq = FALSE, main = NA, xlab = "Expend")
abline(v = betahat[1], col = 2, lty = 2, lwd = 2)
hist(betasim[, 8], "FD", freq = FALSE, main = NA, xlab = "Takers")
abline(v = betahat[2], col = 2, lty = 2, lwd = 2)
mtext("Stochastic Regression Imputation", line = -2, outer = TRUE, font = 2)

51

Expend

D
en

si
ty

−25 −15 −5

0.
00

0.
05

0.
10

0.
15

Takers

D
en

si
ty

−0.8 −0.4

0
2

4
6

Stochastic Regression Imputation

52

2 Heteroscedasticity and Autocorrelation

Heteroscedasticity Tests

Inference on linear regression models heavily relies on the assumption of homoscedasticity of the error terms. Hence,
it is important to be able to test for departures from this assumption when it is in doubt. One possible form of
heteroscedasticity appears when the variance of the error terms is a function of some of the available predictors.
There are a number of different statistical tests which can be used to check for this form of heteroscedasticity.

An example of this form of heteroscedasticity appears in the pipeline data set from the faraway package. We can
clearly see that the variation in the standardized residuals increases in a cone shape as a function of the Field
predictor.

library(faraway)
n = dim(pipeline)[1]
p = 1
fit = lm(Lab ~ Field, pipeline)
residuals = fit$residuals
plot(rstandard(fit) ~ Field, pipeline, ylab = "Standardized Residuals", pch = 16)
abline(h = 0, col = 2, lty = 2, lwd = 2)

20 40 60 80

−
3

−
2

−
1

0
1

2
3

Field

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

The observed value of the Breusch-Pagan test statistic is 29.59 and the corresponding p-value is 5 · 10−8, which
implies the rejection of the null hypothesis of homoscedasticity against the alternative that the variance of the
error terms is a linear function of the field predictor, as expected. We verify our calculations by using the bptest
function from the lmtest package with the argument studentize = FALSE.

library(lmtest)
Yaux = n * residualsˆ2/sum(residualsˆ2)
aux = lm(Yaux ~ Field, pipeline)
BP = sum((aux$fitted.values - 1)ˆ2)/2
print(BP)

53

Algorithm 2.1 Breusch-Pagan Test
Input: Random sample (Y, X).

1: We regress Y on X ∈ Rn×p and the intercept term, and we calculate the residual vector ε̂.

2: We define the following auxiliary variable:
Y aux

i = n

∥ε̂∥2
2

ε̂2
i .

3: We regress Y aux on X ∈ Rn×p and the intercept term, and calculate the sum of squares due to regression:

SSRaux =
∥∥∥Ŷ aux − 1

∥∥∥2
.

Note that the sample average of Y aux is equal to 1 by construction.

4: We calculate the observed value BP0 of the Breusch-Pagan test statistic BP as follows:

BP0 = 1
2SSRaux.

We know that BP d→ χ2
p under the null hypothesis of homoscedasticity.

5: We calculate the p-value of the test as P(BP ⩾ BP0).

Output: Observed test statistic BP0 and p-value.

[1] 29.58568

pchisq(BP, p, lower.tail = FALSE)

[1] 5.349868e-08

bptest(fit, studentize = FALSE)

##
Breusch-Pagan test
##
data: fit
BP = 29.586, df = 1, p-value = 5.35e-08

The studentized version of the Breusch-Pagan test was proposed by Roger Koenker as a more robust alternative to
the original test in the case of departures from the normality assumption of the error terms. While the studentized
version of the test has closer to nominal asymptotic type I error, its power is much lower under departures from
normality.

The observed value of the studentized Breusch-Pagan test statistic is 16.05 and the corresponding p-value is 6 · 10−5,
which implies the rejection of the null hypothesis of homoscedasticity against the alternative that the variance of
the error terms is a linear function of the field predictor, as expected. We verify our calculations by again using the
bptest function from the lmtest package.

Yaux = residualsˆ2
aux = lm(Yaux ~ Field, pipeline)
BP = n * summary(aux)$r.squared

54

Algorithm 2.2 Studentized Breusch-Pagan Test
Input: Random sample (Y, X).

1: We regress Y on X ∈ Rn×p and the intercept term, and we calculate the residual vector ε̂.

2: We define the auxiliary variable Y aux
i = ε̂2

i .

3: We regress Y aux on X ∈ Rn×p and the intercept term, and calculate the coefficient of determination:

R2
aux = SSRaux

SSTaux
.

4: We calculate the observed value SBP0 of the studentized Breusch-Pagan test statistic SBP as SBP0 = nR2
aux.

We know that SBP d→ χ2
p under the null hypothesis of homoscedasticity.

5: We calculate the p-value of the test as P(SBP ⩾ SBP0).

Output: Observed test statistic SBP0 and p-value.

print(BP)

[1] 16.04506

pchisq(BP, p, lower.tail = FALSE)

[1] 6.185266e-05

bptest(fit)

##
studentized Breusch-Pagan test
##
data: fit
BP = 16.045, df = 1, p-value = 6.185e-05

The observed value of the White test statistic is 16.22 and the corresponding p-value is 3 · 10−4, which implies the
rejection of the null hypothesis of homoscedasticity against the alternative that the variance of the error terms
is a quadratic function of the field predictor, as expected. We verify our calculations by again using the bptest
function from the lmtest package and specifying a second degree polynomial of Field as the variance formula for
the response variable.

aux = lm(Yaux ~ poly(Field, 2), pipeline)
BP = n * summary(aux)$r.squared
print(BP)

[1] 16.22166

pchisq(BP, p * (p + 3)/2, lower.tail = FALSE)

[1] 0.0003002696

55

Algorithm 2.3 White Test
Input: Random sample (Y, X).

1: We regress Y on X ∈ Rn×p and the intercept term, and we calculate the residual vector ε̂.

2: We define the auxiliary variable Y aux
i = ε̂2

i .

3: We regress Y aux on the predictors X1, X2, . . . , Xp, the squared predictors X2
1 , X2

2 , . . . , X2
p , the pairwise products

X1X2, X1X3, . . . , Xp−1Xp of the predictors and the intercept term. We calculate the coefficient of determination
of this auxiliary model:

R2
aux = SSRaux

SSTaux
.

4: We calculate the observed value w of the White test statistic W as w = nR2
aux. Under the null hypothesis of

homoscedasticity, we know that:
W

d→ χ2
1
2 p(p+3).

5: We calculate the p-value of the test as P(W ⩾ w).

Output: Observed test statistic w and p-value.

bptest(fit, ~poly(Field, 2), data = pipeline)

##
studentized Breusch-Pagan test
##
data: fit
BP = 16.222, df = 2, p-value = 0.0003003

Another possible form of heteroscedasticity appears when the variance of the error terms differs between 2 groups
of observations defined by some binary predictor. First, we simulate a normally distributed predictor X of size
n = 100. Then, we simulate a binary predictor Z whose first n∗ = 75 values are equal to 0 and its last n − n∗ are
equal to 1. The effect of both predictors on the response variable is equal to 2. Lastly, we simulate a sample Y of
size n = 100 from this linear regression model with:

σ2
i =

1, i = 1, 2, . . . , n∗

4, i = n∗ + 1, n∗ + 2, . . . , n
.

We can clearly see that the variation in the residuals of the fitted model is slightly higher for the last n − n∗

observations.

n = 100
nstar = 75
p = 1
X = rnorm(n)
Z = c(numeric(nstar), rep(1, n - nstar))
sigma = c(1, 2)
Y = 2 * X + 2 * Z + rnorm(n, sd = sigma[Z + 1])

56

fit = lm(Y ~ X + Z)
residuals = fit$residuals
plot(rstandard(fit), ylab = "Standardized Residuals", pch = 16)
abline(h = 0, lty = 2, lwd = 2)
abline(v = nstar, col = 2, lty = 2, lwd = 2)

0 20 40 60 80 100

−
2

−
1

0
1

2
3

Index

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

Algorithm 2.4 Goldfeld-Quandt Test
Input: Random sample (Y, X) and change point n∗.

1: We regress Y on X ∈ Rn×p and the intercept term, separately for the first n∗ and the last n − n∗ observations.

2: We calculate the estimated residual variances S2
1 and S2

2 of the 2 linear regression models.

3: We calculate the observed value GQ(12)
0 of the Goldfeld-Quandt test statistic GQ(12) as:

GQ(12)
0 = S2

1
S2

2
.

Under the null hypothesis of homoscedasticity, we know that GQ(12) ∼ Fn∗−p−1,n−n∗−p−1. Equivalently, under
the null hypothesis, note that:

GQ(21) = 1
GQ(12) ∼ Fn−n∗−p−1,n∗−p−1.

4: We calculate the p-value of the two-sided test as:

p-value = 2 · min
{
P
(

GQ(12) ⩽ GQ(12)
0

)
,P
(

GQ(12) ⩾ GQ(12)
0

)}
.

Output: Observed test statistic GQ(12)
0 and p-value.

The observed value of the GQ(12) test statistic is 0.31, while the observed value of the reciprocal GQ(21) test
statistic is 3.18. The corresponding p-value of both equivalent test statistics is 2 · 10−4, which implies the rejection
of the null hypothesis of homoscedasticity against the alternative that the variance of the error terms is unequal
between the 2 groups, as expected. We verify our calculations by using the gqtest function from the lmtest package

57

with the argument alternative = “two.sided”.

aux1 = lm(Y ~ X, subset = Z == 0)
aux2 = lm(Y ~ X, subset = Z == 1)
GQ = summary(aux1)$sigmaˆ2/summary(aux2)$sigmaˆ2
print(GQ)

[1] 0.3149394

2 * min(pf(GQ, nstar - p - 1, n - nstar - p - 1), pf(GQ, nstar - p - 1, n -

nstar - p - 1, lower.tail = FALSE))

[1] 0.0001862302

print(GQˆ(-1))

[1] 3.175214

2 * min(pf(GQˆ(-1), n - nstar - p - 1, nstar - p - 1), pf(GQˆ(-1), n - nstar -

p - 1, nstar - p - 1, lower.tail = FALSE))

[1] 0.0001862302

gqtest(Y ~ X, nstar, alternative = "two.sided")

##
Goldfeld-Quandt test
##
data: Y ~ X
GQ = 3.1752, df1 = 23, df2 = 73, p-value = 0.0001862
alternative hypothesis: variance changes from segment 1 to 2

The difference between the Goldfeld-Quandt test and the generalized F test for equality of variances is that the
Goldfeld-Quandt test allows the slope coefficient corresponding to the predictor X to differ across the 2 groups
of observations defined by the binary predictor Z. Hence, the generalized F test is more parsimonious than the
Goldfeld-Quandt test in the case where no interaction effect between X and the binary predictor on the response
variable is anticipated.

The observed value of the generalized F test statistic is 0.32 and the corresponding p-value is 2 · 10−4, which implies
the rejection of the null hypothesis of homoscedasticity against the alternative that the variance of the error terms
is unequal between the 2 groups, as expected. We observe that the results of the 2 tests closely agree with each
other.

df1 = nstar * (n - p)/n - 1
df2 = (n - nstar) * (n - p)/n - 1
var1 = sum(residuals[Z == 0]ˆ2)/df1
var2 = sum(residuals[Z == 1]ˆ2)/df2
FT = var1/var2
print(FT)

[1] 0.321077

58

Algorithm 2.5 Generalized F Test for Equality of Variances
Input: Random sample (Y, X, Z).

1: We regress Y on X ∈ Rn×p, Z ∈ Rn and the intercept term, and we calculate the residual vector ε̂.

2: Let n∗ =
∑n

i=1 1{zi=0}. We calculate the following residual variances:

σ̃2
1 = 1

n∗ n−p
n − 1

n∑
i=1

ε̂2
i1{zi=0}, σ̃2

2 = 1
(n − n∗) n−p

n − 1

n∑
i=1

ε̂2
i1{zi=1}

3: We calculate the observed value f (12) of the generalized F test statistic F (12) as:

f (12) = σ̃2
1

σ̃2
2

.

Under the null hypothesis of homoscedasticity, we know that:

F (12) ∼ Fn∗ n−p
n −1,(n−n∗) n−p

n −1.

4: We calculate the p-value of the two-sided test as:

p-value = 2 · min
{
P
(

F (12) ⩽ f (12)
)

,P
(

F (12) ⩾ f (12)
)}

.

Output: Observed test statistic f (12) and p-value.

2 * min(pf(FT, df1, df2), pf(FT, df1, df2, lower.tail = FALSE))

[1] 0.000209213

Another possible form of heteroscedasticity appears when the variance of the error terms differs across multiple
groups defined by some categorical predictor. We can see that the variation in the Lab variable appears to be
fairly constant across the 6 different batches in the pipeline data set.

n = dim(pipeline)[1]
Y = pipeline$Lab
X = pipeline$Batch
fit = lm(Lab ~ Batch, pipeline)
boxplot(Lab ~ Batch, pipeline, pch = 16)

59

1 2 3 4 5 6

20
40

60
80

Batch

La
b

Algorithm 2.6 Levene’s Test
Input: Random sample (Y, X), where X ∈ Rn is a categorical predictor with k levels.

1: We regress Y on X and calculate the vector of fitted values Ŷ .

2: We define the auxiliary variable Y aux
i =

∣∣∣Yi − Ŷi

∣∣∣.
3: We regress Y aux on X and perform an overall F test of statistical significance. Levene’s test statistic coincides

with the overall F test statistic for this auxiliary model.

Output: Observed test statistic f and p-value.

The observed value of Levene’s test statistic is 0.82 and the corresponding p-value is 0.54, which implies a failure
to reject the null hypothesis of homoscedasticity, as expected. We verify our calculations by using the leveneTest
function from the car package with the argument “mean”.

library(car)
Yaux = abs(Y - fit$fitted.values)
aux = lm(Yaux ~ Batch, pipeline)
anova(aux)

Analysis of Variance Table
##
Response: Yaux
Df Sum Sq Mean Sq F value Pr(>F)
Batch 5 253.9 50.775 0.3136 0.9038
Residuals 101 16353.4 161.915

leveneTest(fit, "mean")

Levene's Test for Homogeneity of Variance (center = "mean")
Df F value Pr(>F)
group 5 0.3136 0.9038
101

60

Algorithm 2.7 Brown-Forsythe Test
Input: Random sample (Y, X), where X ∈ Rn is a categorical predictor with levels 1, 2, . . . , k.

1: We calculate the median Y value medh(Y) within level h = 1, 2, . . . , k.

2: We define the auxiliary variable Y aux
i = |Yi − medXi(Y)|.

3: We regress Y aux on X and perform an overall F test of statistical significance. The Brown-Forsythe test
statistic coincides with the overall F test statistic for this auxiliary model.

Output: Observed test statistic f and p-value.

The Brown-Forsythe test is much more robust than Levene’s test to departures from the normality assumption
of the error terms, while maintaining high power. However, Levene’s test boasts higher power if there exists no
noticeable departure from normality.

The observed value of the Brown-Forsythe test statistic is 0.84 and the corresponding p-value is 0.52, which implies
a failure to reject the null hypothesis of homoscedasticity, as expected. We verify our calculations by using the
leveneTest function from the car package.

Yaux = abs(Y - aggregate(Lab ~ Batch, pipeline, median)[pipeline$Batch, 2])
aux = lm(Yaux ~ Batch, pipeline)
anova(aux)

Analysis of Variance Table
##
Response: Yaux
Df Sum Sq Mean Sq F value Pr(>F)
Batch 5 235.7 47.132 0.2471 0.9404
Residuals 101 19263.2 190.725

leveneTest(fit)

Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 5 0.2471 0.9404
101

Bartlett’s test is generally more sensitive than Levene’s test to departures from normality. The observed value
of Bartlett’s test statistic is 0.63 and the corresponding p-value is 0.99, which implies a failure to reject the null
hypothesis of homoscedasticity, as expected. We verify our calculations by using R’s built-in bartlett.test function.

k = length(unique(X))
ns = table(X)
S2 = aggregate(Lab ~ Batch, pipeline, var)[, 2]
Sp2 = sum((ns - 1) * S2)/(n - k)
BT = ((n - k) * log(Sp2) - sum((ns - 1) * log(S2)))/(1 + (sum((ns - 1)ˆ(-1)) -

(n - k)ˆ(-1))/(3 * (k - 1)))
print(BT)

61

Algorithm 2.8 Bartlett’s Test
Input: Random sample (Y, X), where X ∈ Rn is a categorical predictor with levels 1, 2, . . . , k.

1: Let nh =
∑n

i=1 1{xi=h} and S2
h be the sample variance of Y within level h = 1, 2, . . . , k.

2: We define a pooled estimate for the variance of Y as follows:

S2
p = 1

n − k

k∑
h=1

(nh − 1)S2
h.

3: We calculate the observed value BT0 of Bartlett’s test statistic BT as:

BT0 =
(n − k) log S2

p −
∑k

h=1(nh − 1) log S2
h

1 + 1
3(k−1)

∑k
h=1

(
1

nh−1 − 1
n−k

) .

Under the null hypothesis of homoscedasticity, we know that BT d→ χ2
k−1.

4: We calculate the p-value of the test as P (BT ⩾ BT0).

Output: Observed test statistic BT0 and p-value.

[1] 0.6312727

pchisq(BT, k - 1, lower.tail = FALSE)

[1] 0.9865267

bartlett.test(Lab ~ Batch, pipeline)

##
Bartlett test of homogeneity of variances
##
data: Lab by Batch
Bartlett's K-squared = 0.63127, df = 5, p-value = 0.9865

White’s Heteroscedasticity-Consistent Estimator

The formula Var
(

β̂
)

= σ2 (XTX
)−1 ∈ Rp×p for the covariance matrix of the least squares estimator is no

longer true in the presence of heteroscedasticity in the error terms. More precisely, under the assumption that
Yi = XT

i β + εi with εi ∼ N
(
0, σ2

i

)
and Σ = diag

{
σ2

1 , σ2
2 , . . . , σ2

n

}
, the formula for the variance of the ordinary

least squares estimator β̂ =
(
XTX

)−1
XTY takes the following form:

Var
(

β̂
)

=
(
XTX

)−1
XTΣX

(
XTX

)−1
.

White proposed to regress Y on X, calculate the residual vector ε̂ and estimate the covariance matrix Σ by
Σ̂0 = diag

{
ε̂2

1, ε̂2
2, . . . , ε̂2

n

}
. Then, White’s heteroscedasticity-consistent estimator for the variance of the ordinary

least squares estimator is given by:

V̂ar0

(
β̂
)

=
(
XTX

)−1
XTΣ̂0X

(
XTX

)−1 =
(

n∑
i=1

XiX
T
i

)−1 n∑
i=1

ε̂2
i XiX

T
i

(
n∑

i=1
XiX

T
i

)−1

.

62

Now, we illustrate White’s heteroscedasticity-consistent estimator on the pipeline data set from the faraway package.
We know that the variation in the standardized residuals increases in a cone shape as a function of the field
predictor. We calculate the ordinary least squares estimate for the covariance matrix of the least squares estimator,
as well as the observed t test statistics and 95% confidence intervals for the individual regression coefficients.

library(faraway)
library(xtable)
fit = lm(Lab ~ Field, pipeline)
betahat = fit$coefficients
X = model.matrix(fit)
n = dim(X)[1]
p = dim(X)[2]
varOLS = summary(fit)$sigmaˆ2 * summary(fit)$cov.unscaled
print(xtable(varOLS, digits = c(0, 4, 4)), comment = FALSE)

(Intercept) Field
(Intercept) 2.4800 -0.0566

Field -0.0566 0.0017

print(xtable(summary(fit)), comment = FALSE)

Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.9675 1.5748 -1.25 0.2143

Field 1.2230 0.0411 29.78 0.0000

print(xtable(confint(fit), digits = c(0, 4, 4)), comment = FALSE)

2.5 % 97.5 %
(Intercept) -5.0900 1.1550

Field 1.1415 1.3044

plot(rstandard(fit) ~ Field, pipeline, ylab = "Standardized Residuals", pch = 16)
abline(h = 0, col = 2, lty = 2, lwd = 2)

63

20 40 60 80

−
3

−
2

−
1

0
1

2
3

Field

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

Then, we calculate White’s estimator, and we use it to perform heteroscedasticity-consistent significance tests
and construct heteroscedasticity-consistent confidence intervals for the regression coefficients. We observe that
the heteroscedasticity-consistent standard error of the intercept is much smaller, so the corresponding confidence
interval is much tighter.

alpha = 0.05
Sigma = diag(fit$residualsˆ2)
varWhite = summary(fit)$cov.unscaled %*% crossprod(X, Sigma) %*% X %*% summary(fit)$cov.unscaled
print(xtable(varWhite, digits = c(0, 4, 4)), comment = FALSE)

(Intercept) Field
(Intercept) 1.3220 -0.0453

Field -0.0453 0.0020

White = matrix(0, p, 4)
rownames(White) = names(fit$coefficients)
colnames(White) = colnames(summary(fit)$coef)
White[, 1] = betahat
White[, 2] = sqrt(diag(varWhite))
White[, 3] = White[, 1]/White[, 2]
White[, 4] = 2 * pt(abs(White[, 3]), n - p, lower.tail = FALSE)
print(xtable(White, digits = c(0, 4, 4, 2, 4)), comment = FALSE)

Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.9675 1.1498 -1.71 0.0900

Field 1.2230 0.0450 27.17 0.0000

White = White[, 1:2]
colnames(White) = colnames(confint(fit))

64

White[, 1] = betahat - qt(1 - alpha/2, n - p) * sqrt(diag(varWhite))
White[, 2] = betahat + qt(1 - alpha/2, n - p) * sqrt(diag(varWhite))
print(xtable(White, digits = c(0, 4, 4)), comment = FALSE)

2.5 % 97.5 %
(Intercept) -4.2473 0.3123

Field 1.1337 1.3122

We verify our calculation of White’s heteroscedasticity-consistent estimator using the vcovHC function from the
sandwich package with the argument “HC0”. We also verify our computation of the heteroscedasticity-consistent
observed t test statistics and confidence intervals by using the coeftest function from the lmtest package and
specifying the computed White’s estimator as the estimated covariance matrix of the least squares estimator.

library(sandwich)
library(lmtest)
varWhite = vcovHC(fit, "HC0")
print(xtable(varWhite, digits = c(0, 4, 4)), comment = FALSE)

(Intercept) Field
(Intercept) 1.3220 -0.0453

Field -0.0453 0.0020

print(xtable(coeftest(fit, vcov. = varWhite)[,], digits = c(0, 4, 4, 2, 4)),
comment = FALSE)

Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.9675 1.1498 -1.71 0.0900

Field 1.2230 0.0450 27.17 0.0000

print(xtable(confint(coeftest(fit, vcov. = varWhite)), digits = c(0, 4, 4)),
comment = FALSE)

2.5 % 97.5 %
(Intercept) -4.2473 0.3123

Field 1.1337 1.3122

It should be noted that various improved estimates for the covariance matrix Σ of the error terms have since been
proposed, including the following:

Σ̂1 = n

n − p
Σ̂0, Σ̂2 = diag

{
ε̂2

i

1 − Pii

}
, Σ̂3 = diag

{
ε̂2

i

(1 − Pii)2

}
,

where Pii is the leverage of observation i, i.e. the i-th diagonal element of the projection matrix P = X
(
XTX

)−1
XT

corresponding to the linear regression model. The vector of leverage values can also be provided by R’s built-in

65

hatvalues function. Note that the standardized residuals corresponding to the ordinary least squares model are given
by ε̂i

S
√

1−Pii
. The estimated covariance matrix Σ̂3 is generally recommended as the most robust heteroscedasticity-

consistent estimator.

P = X %*% tcrossprod(summary(fit)$cov.unscaled, X)
Sigma = diag(fit$residualsˆ2/(1 - diag(P))ˆ2)
all.equal(diag(P), hatvalues(fit))

[1] TRUE

varWhite = summary(fit)$cov.unscaled %*% crossprod(X, Sigma) %*% X %*% summary(fit)$cov.unscaled
print(xtable(varWhite, digits = c(0, 4, 4)), comment = FALSE)

(Intercept) Field
(Intercept) 1.4813 -0.0511

Field -0.0511 0.0023

varWhite = vcovHC(fit, "HC3")
print(xtable(varWhite, digits = c(0, 4, 4)), comment = FALSE)

(Intercept) Field
(Intercept) 1.4813 -0.0511

Field -0.0511 0.0023

Weighted Least Squares

Suppose that Yi = XT
i β + εi, where β ∈ Rp, εi ∼ N

(
0, σ2

i

)
, σ2

i = w−1
i σ2 and W = diag{w1, w2, . . . , wn}. We can

equivalently write that Y = Xβ + ε, where ε ∼ Nn

(
0n, σ2W −1). Let W 1/2 = diag

{√
w1,

√
w2, . . . ,

√
wn

}
denote

the square root of the diagonal weight matrix W . We define:

Ỹ = W 1/2Y, X̃ = W 1/2X, ε̃ = W 1/2ε ∼ Nn

(
0n, σ2In

)
.

Then, we observe that the transformed model Ỹ = X̃β + ε̃ is homoscedastic and can be fitted using the ordinary
least squares method. The ordinary least squares estimator of the transformed model is equal to the weighted least
squares estimator of the original model:

β̂WLS =
(

X̃TX̃
)−1

X̃TỸ =
(
XTWX

)−1
XTWY.

We calculate that:
E
(

β̂WLS

)
= ������(

XTWX
)−1

����XTWX β = β,

Var
(

β̂WLS

)
= σ2 (XTWX

)−1
XT

��W �
��W −1 WX

(
XTWX

)−1 = σ2 (XTWX
)−1

.

66

Let Ŷ = Xβ̂WLS and ε̂ = Y − Ŷ . In the case where X = 1n, i.e. in the absence of any covariates, we observe that
XTWX =

∑n
i=1 wi and XTWY =

∑n
i=1 wiYi. Note that the weighted average of Y is defined as follows:

Y WLS =
∑n

i=1 wiYi∑n
i=1 wi

.

In the absence of covariates, it follows that Ŷ = Xβ̂ = Y WLS1n. In other words, a weighted linear regression
model without covariates yields a constant point prediction which coincides with the weighted average of Y for
the response variable. In contrast, the ordinary linear regression model yields a constant point prediction which
coincides with the sample average of Y for the response variable. Therefore, it makes sense to define the total sum
of squares in weighted least squares regression as follows:

SST =
n∑

i=1
wi

(
Yi − Y WLS

)2 =
(
Y − Y WLS1n

)T
W
(
Y − Y WLS1n

)
.

The total sum of squares in weighted least squares regression can be decomposed as SST = SSR + SSE, where:

SSR =
n∑

i=1
wi

(
Ŷi − Y WLS

)2
=
(

Ŷ − Y WLS1n

)T
W
(

Ŷ − Y WLS1n

)
,

SSE =
n∑

i=1
wi

(
Yi − Ŷi

)2
=

n∑
i=1

wiε̂
2
i = ε̂TWε̂.

We can then define the usual unbiased estimator S2 = SSE
n−p of the residual variance. According to this weighted

sum of squares decomposition, we can define the R2 = SSR
SST coefficient of determination and its adjusted counterpart

R2
adj = 1 − n−1

n−p

(
1 − R2). Note that we can only compare weighted linear regression models with the same response

variable and the same choice of weights by using the coefficient of determination and its adjusted counterpart.
Under the global null hypothesis that none of the covariates have any effect on the response variable, we can define
the overall F test statistic F = n−p

p−1
SSR
SSE ∼ Fp−1,n−p. Note that there exists no difference in the construction of

confidence intervals and the conduction of hypothesis tests for the weighted regression coefficients compared to
ordinary least squares regression, after estimating the covariance matrix Var

(
β̂WLS

)
= σ2 (XTWX

)−1 of the
weighted least squares estimator.

Suppose that we want to predict the response value Yn+1 of a new observation with predictor vector Xn+1 ∈ Rp

and weight wn+1. Let Ỹn+1 = XT
n+1β̂WLS be our point prediction and ε̃n+1 = Yn+1 − Ỹn+1 be our prediction error.

Then, it follows that:

Var (ε̃n+1) = σ2
[

1
wn+1

+ XT
n+1

(
XTWX

)−1
Xn+1

]
, S2

ε̃n+1
= S2

[
1

wn+1
+ XT

n+1
(
XTWX

)−1
Xn+1

]
.

Therefore, we can construct the following prediction interval for Yn+1:

IYn+1; 1−α (Y) =
[
Ỹn+1 − tn−p;α/2 · S

ε̃n+1
, Ỹn+1 + tn−p;α/2 · S

ε̃n+1

]
.

The true weights are obviously unknown, but a good choice for them may be deduced from an exploratory data
analysis. For example, the variance of the response variable might appear to be a function of some of the available
predictors. If the response yi for individual i is an average over a sample of size ni, then a logical choice of weight
is wi = ni. If the response yi for individual i is a sum over a sample of size ni, then a logical choice of weight is

67

wi = n−1
i .

Now, we illustrate the weighted least squares method on the pipeline data set from the faraway package. We know
that the variation in the standardized residuals increases in a cone shape as a function of the Field variable.

library(faraway)
fit = lm(Lab ~ Field, pipeline)
residuals = fit$residuals
Y = fit$model[, 1]
X = model.matrix(fit)
n = dim(X)[1]
p = dim(X)[2]
summary(fit)

##
Call:
lm(formula = Lab ~ Field, data = pipeline)
##
Residuals:
Min 1Q Median 3Q Max
-21.985 -4.072 -1.431 2.504 24.334
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.96750 1.57479 -1.249 0.214
Field 1.22297 0.04107 29.778 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 7.865 on 105 degrees of freedom
Multiple R-squared: 0.8941, Adjusted R-squared: 0.8931
F-statistic: 886.7 on 1 and 105 DF, p-value: < 2.2e-16

x = seq(min(X), max(X), 0.1)
predictions = predict(fit, data.frame(Field = x), interval = "prediction")
plot(Lab ~ Field, pipeline, ylim = range(predictions), pch = 16)
lines(predictions[, 1] ~ x, col = 2, lty = 2, lwd = 2)
polygon(c(x, rev(x)), c(predictions[, 2], rev(predictions[, 3])), border = NA,

col = rgb(1, 0, 0, 0.25))

68

20 40 60 80

−
20

20
60

10
0

Field

La
b

plot(rstandard(fit) ~ Field, pipeline, ylab = "Standardized Residuals", pch = 16)
abline(h = 0, col = 2, lty = 2, lwd = 2)

20 40 60 80

−
3

−
2

−
1

0
1

2
3

Field

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

The variance of the response variable appears to be a quadratic function of the Field variable. Hence, a good choice
of weights would be for them to be equal to the reciprocal of the square of the Field variable. This leads to weights
which become smaller as the predictor takes larger values, so that the corresponding variances become larger. Any
diagnostic checks for the weighted least squares model must be based on the weighted residuals, i.e. the residuals
multiplied by the square roots of the corresponding weights, since the unweighted residuals don’t have constant
variance by design. The standard errors of the regression coefficients become much smaller after using the weighted
least squares method, leading to more precise estimates.

w = pipeline$Fieldˆ(-2)
W = diag(w)
betaWLS = drop(solve(crossprod(X, W) %*% X, crossprod(X, W) %*% Y))
fitted = drop(X %*% betaWLS)
summary(fitted)

69

Min. 1st Qu. Median Mean 3rd Qu. Max.
5.069 20.370 40.378 38.706 53.913 99.226

residuals = (Y - fitted) * sqrt(w)
summary(residuals)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.40003 -0.15467 -0.04935 0.00000 0.13453 0.56117

YWLS = sum(w * Y)/sum(w)
SST = sum(w * (Y - YWLS)ˆ2)
SSR = sum(w * (fitted - YWLS)ˆ2)
SSE = sum(residualsˆ2)
S = sqrt(SSE/(n - p))
print(S)

[1] 0.2138649

varWLS = Sˆ2 * solve(crossprod(X, W) %*% X)
WLS = matrix(0, p, 4)
rownames(WLS) = names(fit$coefficients)
colnames(WLS) = colnames(summary(fit)$coef)
WLS[, 1] = betaWLS
WLS[, 2] = sqrt(diag(varWLS))
WLS[, 3] = WLS[, 1]/WLS[, 2]
WLS[, 4] = 2 * pt(abs(WLS[, 3]), n - p, lower.tail = FALSE)
print(WLS)

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.8155332 0.60176881 -1.355227 1.782536e-01
Field 1.1769553 0.03400955 34.606614 3.109939e-59

R2 = SSR/SST
print(R2)

[1] 0.9193931

R2adj = 1 - (1 - R2) * (n - 1)/(n - p)
print(R2adj)

[1] 0.9186254

f = (SSR/(p - 1))/Sˆ2
print(f)

[1] 1197.618

Alternatively, we can transform the response variable, the predictors and the intercept term by multiplying each
of them by the square roots of the weights. Then, we can regress the transformed response variable Ỹ on the

70

transformed design matrix X̃ without an intercept term, since a transformed intercept term is included in the
transformed X̃. The fitted values corresponding to the untransformed response variable are obtained by dividing
the fitted values of this weighted least squares model by the square roots of the weights. We can see that the
summary of this weighted least squares model agrees with our previous calculations in all respects expect for the
coefficients of determination and the overall F test statistic of statistical significance, since the weights aren’t taken
into account in the calculation of the sums of squares when fitting the weighted linear regression model in this
manner.

Yweight = Y * sqrt(w)
Xweight = X * sqrt(w)
WLS = lm(Yweight ~ 0 + Xweight)
fitted = WLS$fitted.values/sqrt(w)
summary(fitted)

Min. 1st Qu. Median Mean 3rd Qu. Max.
5.069 20.370 40.378 38.706 53.913 99.226

summary(WLS$residuals)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.40003 -0.15467 -0.04935 0.00000 0.13453 0.56117

summary(WLS)

##
Call:
lm(formula = Yweight ~ 0 + Xweight)
##
Residuals:
Min 1Q Median 3Q Max
-0.40003 -0.15467 -0.04935 0.13453 0.56117
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
Xweight(Intercept) -0.81553 0.60177 -1.355 0.178
XweightField 1.17696 0.03401 34.607 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.2139 on 105 degrees of freedom
Multiple R-squared: 0.9667, Adjusted R-squared: 0.966
F-statistic: 1522 on 2 and 105 DF, p-value: < 2.2e-16

The most reliable way of fitting the weighted linear regression model is to make use of the weights argument in R’s
built-in lm function to specify the weights we desire. Now, the summary of the weighted linear regression model
completely agrees with our previous calculations. Note that the lm object actually returns the unweighted residuals
in this case, so we instead have to use the summary.lm object to obtain the correctly weighted residuals. We can

71

see that the variation in the standardized residuals is fairly constant after using the weighted least squares method.

WLS = lm(Lab ~ Field, pipeline, weights = w)
summary(WLS$fitted.values)

Min. 1st Qu. Median Mean 3rd Qu. Max.
5.069 20.370 40.378 38.706 53.913 99.226

summary(WLS$residuals)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-19.2257 -4.0160 -1.5236 0.3931 3.0993 25.2525

summary(summary(WLS)$residuals)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.40003 -0.15467 -0.04935 0.00000 0.13453 0.56117

summary(WLS)

##
Call:
lm(formula = Lab ~ Field, data = pipeline, weights = w)
##
Weighted Residuals:
Min 1Q Median 3Q Max
-0.40003 -0.15467 -0.04935 0.13453 0.56117
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.81553 0.60177 -1.355 0.178
Field 1.17696 0.03401 34.607 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.2139 on 105 degrees of freedom
Multiple R-squared: 0.9194, Adjusted R-squared: 0.9186
F-statistic: 1198 on 1 and 105 DF, p-value: < 2.2e-16

plot(WLS$fitted.values, rstandard(WLS), xlab = "Fitted Values", ylab = "Standardized Residuals",
pch = 16)

abline(h = 0, col = 2, lty = 2, lwd = 2)

72

20 40 60 80 100

−
2

−
1

0
1

2

Fitted Values

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

When making predictions according to this weighted linear regression model, on top of specifying new predictor
values, we also have to specify the appropriate weights which correspond to the new predictor values. We observe
that the resulting prediction region does a better job of capturing the trend in the response variable than the
one obtained by using the ordinary least squares method and is very similar to the prediction region obtained by
applying a log-transformation on both the predictor and the response variable.

x = seq(min(X), max(X), 0.1)
predictions = predict(WLS, data.frame(Field = x), interval = "prediction", weights = xˆ(-2))
plot(Lab ~ Field, pipeline, ylim = range(predictions), pch = 16)
lines(predictions[, 1] ~ x, col = 4, lty = 2, lwd = 2)
polygon(c(x, rev(x)), c(predictions[, 2], rev(predictions[, 3])), border = NA,

col = rgb(0, 0, 1, 0.25))

20 40 60 80

0
20

60
10

0
14

0

Field

La
b

More generally, we might believe that σ2
i = α0Fieldα1

i for some unknown parameters α0 > 0 and α1 ∈ R.
Equivalently, we might believe that log σ2

i = log α0 + α1 log Fieldi. We can estimate the unknown parameters α0

73

and α1 using a variation of the iteratively reweighted least squares (IRLS) method.

Algorithm 2.9 Iteratively Reweighted Least Squares
Input: Random sample (Y, X).

1: We initialize wi = 1 for i = 1, 2, . . . , n, regress Y on X and calculate the residual vector ε̂.

2: We iterate the following steps until convergence of the weights:

i: We define the auxiliary variable Y aux
i = log ε̂2

i ;

ii: We regress Y aux on log X and calculate the fitted values vector Ŷ aux;

iii: We redefine the weights as wi = e−Ŷ aux
i ;

iv: We use the new weights to regress Y on X and calculate a new unweighted residual vector ε̂.

Output: Weighted least squares estimate.

We run this iteratively reweighted least squares method until the relative difference between 2 consecutive weight
vector estimates is smaller than 10−5. We observe that σ2

i ≈ 0.05 · Field1.67
i according to the final auxiliary model.

The final weighted least squares model is very similar to the one we previously estimated. In order to make
predictions based on the final weighted least squares model, we first need to predict the weights corresponding to
the new predictor values based on the final auxiliary model. The resulting prediction region is slightly narrower
than the one previously calculated.

w = 1
err = Inf
while (err > 1e-05) {

aux = lm(log(residualsˆ2) ~ log(Field), pipeline)
err = sum(abs(w - exp(-aux$fitted.values)))/sum(w)
w = exp(-aux$fitted.values)
WLS = lm(Lab ~ Field, pipeline, weights = w)
residuals = WLS$residuals

}
aux = lm(log(residualsˆ2) ~ log(Field), pipeline)
alpha0 = exp(aux$coefficients[1])
print(alpha0)

(Intercept)
0.04607651

alpha1 = aux$coefficients[2]
print(alpha1)

log(Field)
1.668438

summary(aux)

##
Call:

74

lm(formula = log(residuals^2) ~ log(Field), data = pipeline)
##
Residuals:
Min 1Q Median 3Q Max
-12.2763 -0.9092 0.2493 1.4223 3.1576
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.0775 1.0718 -2.871 0.00495 **
log(Field) 1.6684 0.3159 5.281 6.99e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 2.116 on 105 degrees of freedom
Multiple R-squared: 0.2099, Adjusted R-squared: 0.2023
F-statistic: 27.89 on 1 and 105 DF, p-value: 6.987e-07

summary(WLS)

##
Call:
lm(formula = Lab ~ Field, data = pipeline, weights = w)
##
Weighted Residuals:
Min 1Q Median 3Q Max
-3.0968 -1.1944 -0.4437 1.0601 4.8492
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.05707 0.69839 -1.514 0.133
Field 1.18971 0.03401 34.985 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 1.75 on 105 degrees of freedom
Multiple R-squared: 0.921, Adjusted R-squared: 0.9202
F-statistic: 1224 on 1 and 105 DF, p-value: < 2.2e-16

w = exp(-predict(aux, data.frame(Field = x)))
predictions = predict(WLS, data.frame(Field = x), interval = "prediction", weights = w)
plot(Lab ~ Field, pipeline, ylim = range(predictions), pch = 16)
lines(predictions[, 1] ~ x, col = 4, lty = 2, lwd = 2)
polygon(c(x, rev(x)), c(predictions[, 2], rev(predictions[, 3])), border = NA,

col = rgb(0, 0, 1, 0.25))

75

20 40 60 80

0
20

60
10

0

Field

La
b

plot(rstandard(WLS) ~ Field, pipeline, ylab = "Standardized Residuals", pch = 16)
abline(h = 0, col = 2, lty = 2, lwd = 2)

20 40 60 80

−
1

0
1

2

Field

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

Now, suppose that the variance of the error terms differs across multiple groups defined by some categorical
predictor. Let Yi = XT

i β + γZi + εi, where Z is a categorical predictor with k levels and εi ∼ N
(
0, σ2

Zi

)
. In

the absence of any weight information, we may attempt to numerically optimize the likelihood function of this
heteroscedastic linear regression model with respect to the regression coefficients β ∈ Rp, γ ∈ R and the group
residual variances σ2

1 , σ2
2 , . . . , σ2

k. For this purpose, we can utilize the gls function from the nlme package with
weights given according to the varIdent function. We illustrate this method on the pipeline data set from the
faraway package by assuming that the residual variance differs across the 6 different batches.

library(nlme)
GLS = gls(Lab ~ Field + Batch, pipeline, weights = varIdent(form = ~1 | Batch),

control = glsControl(1000, 10000, opt = "optim", optimMethod = "Nelder-Mead"))
print(GLS)

76

Generalized least squares fit by REML
Model: Lab ~ Field + Batch
Data: pipeline
Log-restricted-likelihood: -351.646
##
Coefficients:
(Intercept) Field Batch2 Batch3 Batch4 Batch5
2.0599354 1.1707439 -0.3252285 -3.5708651 -1.7762121 -3.8966646
Batch6
-6.8599863
##
Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | Batch
Parameter estimates:
1 2 3 4 5 6
1.0000000 0.9967462 0.7836432 0.5758099 0.7274664 0.1727645
Degrees of freedom: 107 total; 100 residual
Residual standard error: 9.726074

sigma = GLS$sigma * coef(GLS$modelStruct$varStruct, allCoef = TRUE, unconstrained = FALSE)
print(sigma)

1 2 3 4 5 6
9.726074 9.694427 7.621772 5.600370 7.075392 1.680321

Autocorrelation Tests

Inference on linear regression models also heavily relies on the assumption of uncorrelatedness of the error terms.
Hence, it is important to be able to test for departures from this assumption when it is in doubt. One possible
form of autocorrelation appears on time series data, where observations on consecutive time points are naturally
correlated with each other, and that correlation fades the further away 2 time points lie from each other. There are
a number of different statistical tests which can be used to check for autocorrelation.

An example of this form of autocorrelation appears in the longley data set. We can see that the residuals
corresponding to consecutive years tend to have the same sign instead of being randomly scattered around the
x-axis, which is a clear sign of autocorrelation. Additionally, the residuals appear to be positively correlated with
their lagged counterparts from the previous year, which is also a sign of autocorrelation. We define the sample
autocorrelation coefficient of the residuals at lag k as follows:

rk =
∑n

i=k+1 ε̂iε̂i−k∑n
i=1 ε̂2

i

.

Since the sample average of the residuals is equal to 0 by design, the numerator estimates the total covariation
between the residuals and their lagged counterparts, while the denominator estimates the total variation in the
residuals, providing us with an estimate of the correlation between the residuals and their lagged counterparts.

77

We can verify our calculation using R’s built-in acf function, which can also output a plot of the autocorrelation
function for increasing lag values with appropriate confidence bounds. If any sample autocorrelation rk falls outside
the bounds, this implies that the corresponding true autocorrelation ρk is statistically significant at the chosen
significance level. The first autocorrelation at lag k = 0 is always equal to 1 by definition, so it’s of not interest. The
second autocorrelation at lag k = 1 appears to be significant at the 10% significance level. Further autocorrelation
coefficients which spuriously appear to be statistically significant down the line may be attributed to random
chance due to multiple testing or may be a sign of seasonality in the time series.

library(dplyr)
n = dim(longley)[1]
p = 3
k = 1
fit = lm(Employed ~ Unemployed + Population, longley)
Residuals = fit$residuals
ACF = sum(Residuals * lag(Residuals, k), na.rm = TRUE)/sum(Residualsˆ2)
print(ACF)

[1] 0.4886877

acf(Residuals, plot = FALSE)$acf[k + 1]

[1] 0.4886877

par(mfrow = c(1, 3))
plot(Residuals ~ Year, longley, pch = 16)
abline(h = 0, col = 2, lty = 2, lwd = 2)
plot(lag(Residuals, k), Residuals, xlab = "Lagged Residuals", pch = 16)
abline(lm(Residuals ~ lag(Residuals, k)), col = 2, lty = 2, lwd = 2)
acf(Residuals, ci = 0.9, main = NA)

1950 1955 1960

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Year

R
es

id
ua

ls

−0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Lagged Residuals

R
es

id
ua

ls

0 2 4 6 8 10 12

−
0.

5
0.

0
0.

5
1.

0

Lag

A
C

F

78

The Durbin-Watson test statistic is defined as:

D =
∑n

i=2 (ε̂i − ε̂i−1)2∑n
i=1 ε̂2

i

.

We observe that:
D =

∑n
i=2
(
ε̂2

i + ε̂2
i−1
)∑n

i=1 ε̂2
i

− 2
∑n

i=2 ε̂iε̂i−1∑n
i=1 ε̂2

i

≈ 2 − 2r1 = 2(1 − r1).

Since r1 ∈ [−1, 1], we infer that the Durbin-Watson test statistic takes values on [0, 4]. When r1 ≈ 0, we
notice that D ≈ 2. Hence, observed values of the test statistic away from 2 are a sign of autocorrelation at lag
k = 1. Unfortunately, the test statistic doesn’t follow some known distribution under the null hypothesis of no
autocorrelation, so the p-value associated with the observed test statistic needs to be estimated via Pan’s iterative
procedure, a normal approximation or Monte Carlo simulation.

The dwtest function from the lmtest package uses Pan’s algorithm for smaller sample sizes n < 100 and a normal
approximation for larger sample sizes. The observed value of the Durbin-Watson test statistic is 0.73 ≪ 2 and the
corresponding estimated p-value is 5 · 10−4, which implies the rejection of the null hypothesis of no autocorrelation
at lag k = 1 against the two-sided alternative.

library(lmtest)
DW = sum(diff(Residuals)ˆ2)/sum(Residualsˆ2)
print(DW)

[1] 0.7257321

dwtest(fit, alternative = "two.sided")

##
Durbin-Watson test
##
data: fit
DW = 0.72573, p-value = 0.0004777
alternative hypothesis: true autocorrelation is not 0

The Box-Pierce test statistic is defined as:

BP = n
k∑

h=1
r2

h.

Under the null hypothesis of no autocorrelation up to lag k, we know that BP d→ χ2
k. If BP0 is the observed value

of the test statistic, then we calculate the p-value of the test as P (BP ⩾ BP0).

The observed value of the Box-Pierce test statistic is 3.82 and the corresponding p-value is 0.0506, which is
borderline above the usual significance level. We verify our calculations by again using R’s built-in Box.test
function, specifying the number k of tested lags.

BP = n * sum(acf(Residuals, plot = FALSE)$acf[2:(k + 1)]ˆ2)
print(BP)

[1] 3.82105

79

pchisq(BP, k, lower.tail = FALSE)

[1] 0.0506125

Box.test(Residuals, k)

##
Box-Pierce test
##
data: Residuals
X-squared = 3.8211, df = 1, p-value = 0.05061

The Ljung-Box test statistic is defined as:

LB = n(n + 2)
k∑

h=1

r2
h

n − h
.

Under the null hypothesis of no autocorrelation up to lag k, we know that LB d→ χ2
k. If LB0 is the observed

value of the test statistic, then we calculate the p-value of the test as P (LB ⩾ LB0). It should be noted that the
null distribution of the Ljung-Box test statistic more closely approximates the χ2

k distribution than the the null
distribution of the Box-Pierce test statistic for smaller sample sizes.

The observed value of the Ljung-Box test statistic is 4.59 and the corresponding p-value is 0.03, which implies
the rejection of the null hypothesis of no autocorrelation up to lag k = 1. We verify our calculations by using R’s
built-in Box.test function, specifying the number k of tested lags and type = “Ljung-Box”.

LB = n * (n + 2) * sum(acf(Residuals, plot = FALSE)$acf[2:(k + 1)]ˆ2/(n - (1:k)))
print(LB)

[1] 4.585261

pchisq(LB, k, lower.tail = FALSE)

[1] 0.03224807

Box.test(Residuals, k, type = "Ljung-Box")

##
Box-Ljung test
##
data: Residuals
X-squared = 4.5853, df = 1, p-value = 0.03225

The Breusch-Godfrey test is considered to be much more applicable than the Ljung-Box test for autocorrelation,
since it makes fewer assumptions on the structure of the time series. The observed value of the Breusch-Godfrey F
test statistic is 8.51 and the corresponding p-value is 0.01, which implies the rejection of the null hypothesis of no
autocorrelation up to lag k = 1.

Lagged = sapply(1:k, function(x) {
lag(Residuals, x)

80

Algorithm 2.10 Breusch-Godfrey F test
Input: Random sample (Y, X) and lag k.

1: We regress Y on X ∈ Rn×p and calculate the residual vector ε̂.

2: We regress ε̂ on X ∈ Rn×p and the lagged residual vectors of up to order k to obtain a full model.

3: We regress ε̂ on just X ∈ Rn×p to obtain a reduced model. We perform an overall F test of statistical
significance to compare the reduced against the full model.

4: We know that F ∼ Fk,n−p−2k under the null hypothesis of no autocorrelation up to lag k. We calculate the
p-value of the test as P(F ⩾ f).

Output: Observed test statistic f and p-value.

})
aux = lm(Residuals ~ Unemployed + Population + Lagged, longley)
reduced = lm(Residuals ~ Unemployed + Population, longley, (k + 1):n)
anova(reduced, aux)

Analysis of Variance Table
##
Model 1: Residuals ~ Unemployed + Population
Model 2: Residuals ~ Unemployed + Population + Lagged
Res.Df RSS Df Sum of Sq F Pr(>F)
1 12 5.7237
2 11 3.2263 1 2.4974 8.5148 0.01399 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Algorithm 2.11 Breusch-Godfrey χ2 Test
Input: Random sample (Y, X) and lag k.

1: We regress Y on X and calculate the residual vector ε̂.

2: We regress ε̂ on X and the lagged residual vectors of up to order k. We calculate the coefficient of determination:

R2
aux = SSRaux

SSTaux
.

3: We calculate the observed value BG0 of the Breusch-Godfrey χ2 test statistic BG as BG0 = (n − k)R2
aux. We

know that BG d→ χ2
k under the null hypothesis of no autocorrelation up to lag k.

4: We calculate the p-value of the test as P(BG ⩾ BG0).

Output: Observed test statistic BG0 and p-value.

The Breusch-Godfrey χ2 test obviously has worse small sample properties than the corresponding F test, since it
relies on an asymptotic approximation for the null distribution of the test statistic. The observed value of the
Breusch-Godfrey χ2 test statistic is 6.55 and the corresponding p-value is 0.01, which implies the rejection of the
null hypothesis of no autocorrelation up to lag k = 1.

81

BG = (n - k) * summary(aux)$r.squared
print(BG)

[1] 6.551443

pchisq(BG, k, lower.tail = FALSE)

[1] 0.01047991

Cochrane–Orcutt Estimation

Suppose that we are interested in the linear regression model Yi = XT
i β + εi, where εi = ρεi−1 + ωi, ρ ∈ (−1, 1)

and ωi ∼ N
(
0, σ2) are independent. We observe that:

Yi = XT
i β + ρεi−1 + ωi,

Yi = XT
i β + ρ

(
Yi−1 − XT

i−1β
)

+ ωi,

Yi − ρYi−1︸ ︷︷ ︸
Ỹi

= (Xi − ρXi−1)T︸ ︷︷ ︸
X̃T

i

β + ωi.

Hence, we arrive at a transformed linear regression model Ỹi = X̃T
i β + ωi with uncorrelated errors ωi. The true

coefficient ρ is obviously unknown, so we can try estimating it by applying the Cochrane-Orcutt iterative procedure.

Algorithm 2.12 Cochrane–Orcutt Estimation
Input: Random sample (Y, X).

1: We regress Y on X ∈ Rn×p, which includes a column for the intercept term, and we calculate the residual
vector ε̂.

2: We regress the residual vector on the lagged residual vector without an intercept term and extract the estimated
slope coefficient ρ̂.

3: We iterate the following steps until convergence of ρ:

i: We define the auxiliary variables Y CO
i = Yi+1 − ρ̂Yi and XCO

i,j = Xi+1,j − ρ̂Xi,j for i = 1, 2, . . . , n − 1 and
j = 1, 2, . . . , p;

ii: We regress Y CO ∈ Rn−1 on XCO ∈ R(n−1)×p without an intercept term, since a transformed intercept term
is included in XCO, and we extract the least squares estimator β̂CO;

iii: We calculate a new residual vector ε̂ = Y − Xβ̂CO;

iv: We regress the new residual vector on the new lagged residual vector without an intercept term and extract
the new estimate ρ̂ of the slope coefficient.

Output: Fitted linear regression model with uncorrelated residuals.

Now, we illustrate the Cochrane-Orcutt iterative procedure on the longley data set. We know that there’s
statistically significant autocorrelation at lag k = 1 in the residuals according to the Durbin-Watson test. The
effects of both the Unemployed and the Population predictors on the Employed variable are estimated to be
statistically significant.

82

library(lmtest)
n = dim(longley)[1]
fit = lm(Employed ~ Unemployed + Population, longley)
residuals = fit$residuals
Y = fit$model[, 1]
X = model.matrix(fit)
dwtest(fit, alternative = "two.sided")

##
Durbin-Watson test
##
data: fit
DW = 0.72573, p-value = 0.0004777
alternative hypothesis: true autocorrelation is not 0

summary(fit)

##
Call:
lm(formula = Employed ~ Unemployed + Population, data = longley)
##
Residuals:
Min 1Q Median 3Q Max
-1.2975 -0.3420 -0.1206 0.4006 1.3560
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.135325 3.487991 -0.039 0.969641
Unemployed -0.011151 0.002528 -4.410 0.000704 ***
Population 0.587728 0.033967 17.303 2.34e-10 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.6654 on 13 degrees of freedom
Multiple R-squared: 0.9689, Adjusted R-squared: 0.9641
F-statistic: 202.5 on 2 and 13 DF, p-value: 1.598e-10

After applying the Cochrane-Orcutt iterative procedure, we notice that the estimate of the slope coefficient ρ

initially lies close to 0.7 and converges to 0.99, which implies very strong autocorrelation at lag k = 1 in the error
terms of the ordinary least squares model. The observed value of the Durbin-Watson test statistic on the final
linear regression model is much closer to 2 and implies a failure to reject the null hypothesis of no autocorrelation.
We observe that the standard error for the estimated coefficient of the Unemployed predictor has become slightly
smaller, while the standard error for the estimated coefficient of the Population variable has grown much larger,
leading to it not having a statistically significant effect on the Employed variable anymore.

83

library(dplyr)
aux = lm(residuals ~ 0 + lag(residuals))
rho = aux$coefficients
summary(aux)

##
Call:
lm(formula = residuals ~ 0 + lag(residuals))
##
Residuals:
Min 1Q Median 3Q Max
-1.07891 -0.24878 -0.07803 0.07175 1.07934
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
lag(residuals) 0.6907 0.2578 2.68 0.018 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.5201 on 14 degrees of freedom
(1 observation deleted due to missingness)
Multiple R-squared: 0.339, Adjusted R-squared: 0.2918
F-statistic: 7.181 on 1 and 14 DF, p-value: 0.01795

err = Inf
while (err > 1e-05) {

YCO = Y - rho * lag(Y)
XCO = X - rho * lag(X)
CO = lm(YCO ~ 0 + XCO)
residuals = Y - X %*% CO$coefficients
aux = lm(residuals ~ 0 + lag(residuals))
err = abs((rho - aux$coefficients)/rho)
rho = aux$coefficients

}
summary(aux)

##
Call:
lm(formula = residuals ~ 0 + lag(residuals))
##
Residuals:
Min 1Q Median 3Q Max
-0.63148 -0.30440 -0.09813 0.26493 0.92324
##

84

Coefficients:
Estimate Std. Error t value Pr(>|t|)
lag(residuals) 0.992208 0.001088 912 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.4363 on 14 degrees of freedom
(1 observation deleted due to missingness)
Multiple R-squared: 1, Adjusted R-squared: 1
F-statistic: 8.318e+05 on 1 and 14 DF, p-value: < 2.2e-16

YCO = Y - rho * lag(Y)
XCO = X - rho * lag(X)
CO = lm(YCO ~ 0 + XCO)
dwtest(CO, alternative = "two.sided")

##
Durbin-Watson test
##
data: CO
DW = 1.5172, p-value = 0.2528
alternative hypothesis: true autocorrelation is not 0

summary(CO)

##
Call:
lm(formula = YCO ~ 0 + XCO)
##
Residuals:
Min 1Q Median 3Q Max
-0.6325 -0.3054 -0.0992 0.2639 0.9222
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
XCO(Intercept) 171.546867 80.272558 2.137 0.0539 .
XCOUnemployed -0.012550 0.001367 -9.178 8.98e-07 ***
XCOPopulation 0.008389 0.255047 0.033 0.9743

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.4712 on 12 degrees of freedom
(1 observation deleted due to missingness)
Multiple R-squared: 0.9374, Adjusted R-squared: 0.9217
F-statistic: 59.88 on 3 and 12 DF, p-value: 1.72e-07

85

Alternatively, we can utilize the cochrane.orcutt function from the orcutt package to perform this iterative procedure.

library(orcutt)
CO = cochrane.orcutt(fit, 5, 1000)
print(CO$rho)

[1] 0.9923051

summary(CO)

Call:
lm(formula = Employed ~ Unemployed + Population, data = longley)
##
Estimate Std. Error t value Pr(>|t|)
(Intercept) 173.0929618 80.9979272 2.137 0.05388 .
Unemployed -0.0125499 0.0013673 -9.179 8.967e-07 ***
Population 0.0076405 0.2553010 0.030 0.97662

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.4712 on 12 degrees of freedom
Multiple R-squared: 0.8754 , Adjusted R-squared: 0.8546
F-statistic: 42.1 on 2 and 12 DF, p-value: < 3.744e-06
##
Durbin-Watson statistic
(original): 0.72573 , p-value: 2.389e-04
(transformed): 1.51787 , p-value: 1.267e-01

Generalized Least Squares

Suppose that Y = Xβ + ε, where X ∈ Rn×p, ε ∼ Nn

(
0, σ2Ω

)
and Ω is a positive definite matrix. Let Ω = LLT be

the Cholesky decomposition of Ω, where L is a lower diagonal matrix. We define:

Ỹ = L−1Y, X̃ = L−1X, ε̃ = L−1ε ∼ Nn

(
0n, σ2L−1ΣL−T) ≡ Nn

(
0n, σ2In

)
.

Then, we observe that the transformed model Ỹ = X̃β + ε̃ has uncorrelated errors and can be fitted using the
ordinary least squares method. The ordinary least squares estimator of the transformed model is equal to the
generalized least squares estimator of the original model:

β̂GLS =
(

X̃TX̃
)−1

X̃TỸ =
(
XTL−TL−1X

)−1
XTL−TL−1Y =

(
XTΩ−1X

)−1
XTΩ−1Y.

We calculate that:
E
(

β̂GLS

)
= �������(

XTΩ−1X
)−1

�����
XTΩ−1X β = β,

Var
(

β̂GLS

)
= σ2 (XTΩ−1X

)−1
XT��Ω−1

�ΩΩ−1X
(
XTΩ−1X

)−1 = σ2 (XTΩ−1X
)−1

.

86

Let Ŷ = Xβ̂GLS and ε̂ = Y − Ŷ . Then, an unbiased estimator of the residual variance is given by:

S2 = 1
n − p

ε̂TΩ−1ε̂.

The true covariance matrix Ω is obviously unknown and consists of too many distinct elements to be estimated
consistently, so it’s generally parametrized in a way that suits the experiment of interest. In the presence of
autocorrelation at lag k = 1 in the error terms, a standard parametrization of Ω = [Ωij] is Ωij = ρ|i−j|, where
ρ ∈ (−1, 1) is an autocorrelation parameter to be estimated from the data. One possible way to estimate it is to
follow an iterative estimation procedure similar to iteratively reweighted least squares.

Algorithm 2.13 Feasible Generalized Least Squares
Input: Random sample (Y, X).

1: We regress Y on X ∈ Rn×p, which includes a column for the intercept term, and we calculate the residual
vector ε̂.

2: We regress the residual vector on the lagged residual vector without an intercept term and extract the estimated
slope coefficient ρ̂.

3: We iterate the following steps until convergence of ρ:

i: We calculate Ω̂ij = ρ̂|i−j| for i, j = 1, 2, . . . , n and compute the Cholesky decomposition Ω̂ = LLT;

ii: We define the auxiliary variables YGLS = L−1Y and XGLS = L−1X;

iii: We regress YGLS on XGLS without an intercept term, since a transformed intercept term is included in
XGLS, and we extract the generalized least squares estimator β̂GLS;

iv: We calculate a new residual vector ε̂ = Y − Xβ̂GLS;

v: We regress the new residual vector on the new lagged residual vector without an intercept term and extract
the new estimate ρ̂ of the slope coefficient.

Output: Generalized least squares estimate.

Now, we illustrate the generalized least squares method on the longley data set. We know that there’s statistically
significant autocorrelation at lag k = 1 in the residuals according to the plot of the autocorrelation function.

fit = lm(Employed ~ Unemployed + Population, longley)
residuals = fit$residuals
Y = fit$model[, 1]
X = model.matrix(fit)
n = dim(X)[1]
p = dim(X)[2]
summary(fit)

##
Call:
lm(formula = Employed ~ Unemployed + Population, data = longley)
##
Residuals:
Min 1Q Median 3Q Max

87

-1.2975 -0.3420 -0.1206 0.4006 1.3560
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.135325 3.487991 -0.039 0.969641
Unemployed -0.011151 0.002528 -4.410 0.000704 ***
Population 0.587728 0.033967 17.303 2.34e-10 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.6654 on 13 degrees of freedom
Multiple R-squared: 0.9689, Adjusted R-squared: 0.9641
F-statistic: 202.5 on 2 and 13 DF, p-value: 1.598e-10

acf(residuals, main = NA)

0 2 4 6 8 10 12

−
0.

5
0.

0
0.

5
1.

0

Lag

A
C

F

We apply the feasible generalized least squares method until the relative difference between 2 consecutive ρ estimates
is smaller than 10−5. We notice that the estimate of the autocorrelation parameter ρ initially lies close to 0.7
and converges to 0.77, which implies strong autocorrelation at lag k = 1 in the error terms of the ordinary least
squares model. Any diagnostic checks for the generalized least squares model must be based on the transformed
residual vector, i.e. the residual vector left-multiplied by the inverse of the lower triangular matrix L, since the
untransformed residuals are correlated by design. We observe that the estimated residual standard error of the final
model is slightly higher than the corresponding ordinary least squares estimate. Furthermore, we notice that the
autocorrelation plot of the transformed residuals for the final generalized least squares model displays no significant
signs of autocorrelation.

library(dplyr)
aux = lm(residuals ~ 0 + lag(residuals))
rho = aux$coefficients
summary(aux)

88

##
Call:
lm(formula = residuals ~ 0 + lag(residuals))
##
Residuals:
Min 1Q Median 3Q Max
-1.07891 -0.24878 -0.07803 0.07175 1.07934
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
lag(residuals) 0.6907 0.2578 2.68 0.018 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.5201 on 14 degrees of freedom
(1 observation deleted due to missingness)
Multiple R-squared: 0.339, Adjusted R-squared: 0.2918
F-statistic: 7.181 on 1 and 14 DF, p-value: 0.01795

err = Inf
while (err > 1e-05) {

Omega = rhoˆabs(outer(1:n, 1:n, "-"))
L = t(chol(Omega))
YGLS = solve(L, Y)
XGLS = solve(L, X)
GLS = lm(YGLS ~ 0 + XGLS)
residuals = Y - X %*% GLS$coefficients
aux = lm(residuals ~ 0 + lag(residuals))
err = abs((rho - aux$coefficients)/rho)
rho = aux$coefficients

}
summary(aux)

##
Call:
lm(formula = residuals ~ 0 + lag(residuals))
##
Residuals:
Min 1Q Median 3Q Max
-0.88763 -0.16066 0.05272 0.17683 1.12371
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
lag(residuals) 0.7748 0.1709 4.534 0.000468 ***

89

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.4848 on 14 degrees of freedom
(1 observation deleted due to missingness)
Multiple R-squared: 0.5949, Adjusted R-squared: 0.5659
F-statistic: 20.56 on 1 and 14 DF, p-value: 0.000468

Omega = rhoˆabs(outer(1:n, 1:n, "-"))
L = t(chol(Omega))
betaGLS = drop(solve(crossprod(X, solve(Omega, X)), crossprod(X, solve(Omega,

Y))))
fitted = drop(X %*% betaGLS)
summary(fitted)

Min. 1st Qu. Median Mean 3rd Qu. Max.
60.30 62.99 65.46 65.11 67.22 71.06

residuals = drop(solve(L, Y - fitted))
summary(residuals)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.403954 -0.329055 -0.005465 0.048974 0.269370 1.777351

S = sqrt(sum(residualsˆ2)/(n - p))
print(S)

[1] 0.8047888

varGLS = Sˆ2 * solve(crossprod(X, solve(Omega, X)))
GLS = matrix(0, p, 4)
rownames(GLS) = names(fit$coefficients)
colnames(GLS) = colnames(summary(fit)$coef)
GLS[, 1] = betaGLS
GLS[, 2] = sqrt(diag(varGLS))
GLS[, 3] = GLS[, 1]/GLS[, 2]
GLS[, 4] = 2 * pt(abs(GLS[, 3]), n - p, lower.tail = FALSE)
print(GLS)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.52230942 5.831980487 0.7754329 4.519598e-01
Unemployed -0.01241088 0.001638973 -7.5723514 4.059106e-06
Population 0.54975749 0.050279433 10.9340431 6.324584e-08

90

acf(residuals, main = NA)

0 2 4 6 8 10 12

−
0.

5
0.

0
0.

5
1.

0

Lag

A
C

F

Alternatively, we can transform the response variable, the predictors and the intercept term by left-multiplying
each of them by the inverse of the lower triangular matrix L. Then, we can regress the transformed response
variable Ỹ on the transformed design matrix X̃ without an intercept term, since a transformed intercept term
is included in the transformed X̃. The fitted values corresponding to the untransformed response variable are
obtained by left-multiplying the fitted values of this generalized least squares model by the L matrix. We can see
that the summary of this generalized least squares model is accurate in all respects expect for the coefficients of
determination and the overall F test statistic of statistical significance, since the covariance matrix Ω isn’t taken
into account in the calculation of the sums of squares when fitting the generalized linear regression model in this
manner. We can verify our calculations by using the gls function from the nlme package with correlation structure
given according to the corAR1 function and a fixed value for the estimated autocorrelation ρ.

library(nlme)
YGLS = solve(L, Y)
XGLS = solve(L, X)
GLS = lm(YGLS ~ 0 + XGLS)
fitted = drop(L %*% GLS$fitted.values)
summary(fitted)

Min. 1st Qu. Median Mean 3rd Qu. Max.
60.30 62.99 65.46 65.11 67.22 71.06

summary(GLS$residuals)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.403954 -0.329055 -0.005465 0.048974 0.269370 1.777351

summary(GLS)

##
Call:

91

lm(formula = YGLS ~ 0 + XGLS)
##
Residuals:
Min 1Q Median 3Q Max
-1.40395 -0.32906 -0.00547 0.26937 1.77735
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
XGLS(Intercept) 4.522309 5.831980 0.775 0.452
XGLSUnemployed -0.012411 0.001639 -7.572 4.06e-06 ***
XGLSPopulation 0.549757 0.050279 10.934 6.32e-08 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.8048 on 13 degrees of freedom
Multiple R-squared: 0.9993, Adjusted R-squared: 0.9992
F-statistic: 6430 on 3 and 13 DF, p-value: < 2.2e-16

GLS = gls(Employed ~ Unemployed + Population, longley, corAR1(rho, ~Year, fixed = TRUE))
print(GLS$sigma)

[1] 0.8047888

print(summary(GLS)$tTable)

Value Std.Error t-value p-value
(Intercept) 4.52230942 5.831980487 0.7754329 4.519598e-01
Unemployed -0.01241088 0.001638973 -7.5723514 4.059106e-06
Population 0.54975749 0.050279433 10.9340431 6.324584e-08

Otherwise, we could let the gls function optimize the likelihood function of this generalized linear regression model
with respect to the regression coefficients, residual variance and autocorrelation parameter. This leads to an
estimated autocorrelation of 0.73, which is close to the value we estimated ourselves with the previously outlined
iterative estimation procedure.

GLS = gls(Employed ~ Unemployed + Population, longley, corAR1(form = ~Year),
method = "ML", control = glsControl(1000, 10000, opt = "optim"))

print(GLS$sigma)

[1] 0.6750087

print(summary(GLS)$tTable)

Value Std.Error t-value p-value
(Intercept) 3.86892335 5.409682850 0.7151849 4.871413e-01
Unemployed -0.01237131 0.001676007 -7.3814163 5.335513e-06
Population 0.55546369 0.046892937 11.8453595 2.441150e-08

92

coef(GLS$modelStruct$corStruct, unconstrained = FALSE)

Phi
0.731773

93

3 Experimental Design

library(xtable)
n = 40
nblock = 10
nsim = 1000
block = factor(rep(1:nblock, each = n/nblock))
betasim = matrix(0, nsim, 4)
SE = matrix(0, nsim, 4)
for (i in 1:nsim) {

epsilon = rnorm(n)
u = rep(rnorm(nblock, 0, 3), each = n/nblock)
treatment = is.element(1:n, sample(n, n/2))
Y = 2 * treatment + u + epsilon
fit = lm(Y ~ treatment)
betasim[i, 1] = fit$coefficients[2]
SE[i, 1] = summary(fit)$coefficients[2, 2]
fit = lm(Y ~ treatment + block)
betasim[i, 2] = fit$coefficients[2]
SE[i, 2] = summary(fit)$coefficients[2, 2]
treatment = numeric(n)
for (b in 1:nblock) {

treatment[block == b][sample(n/nblock, n/(2 * nblock))] = 1
}
Y = 2 * treatment + u + epsilon
fit = lm(Y ~ treatment)
betasim[i, 3] = fit$coefficients[2]
SE[i, 3] = summary(fit)$coefficients[2, 2]
fit = lm(Y ~ treatment + block)
betasim[i, 4] = fit$coefficients[2]
SE[i, 4] = summary(fit)$coefficients[2, 2]

}
sim = matrix(0, 4, 3)
sim[, 1] = apply(betasim, 2, median)
sim[, 2] = apply(SE, 2, median)
sim[, 3] = apply(betasim, 2, sd)
rownames(sim) = c("Complete Randomization Excluding Block", "Complete Randomization Including Block",

"Block Randomization Excluding Block", "Block Randomization Including Block")
colnames(sim) = c("Median Coefficient", "Median S.E.", "Estimated S.E.")
print(xtable(sim), comment = FALSE)

94

Median Coefficient Median S.E. Estimated S.E.
Complete Randomization Excluding Block 1.97 0.95 0.96
Complete Randomization Including Block 2.00 0.36 0.37

Block Randomization Excluding Block 1.99 0.95 0.31
Block Randomization Including Block 1.99 0.32 0.31

hist(SE[, 3], "FD", freq = FALSE, main = NA, xlim = c(sim[3, 3], max(SE[, 3])),
xlab = "Estimated Standard Error")

abline(v = sim[3, 3], col = 2, lty = 2, lwd = 2)

Estimated Standard Error

D
en

si
ty

0.4 0.6 0.8 1.0 1.2 1.4 1.6

0.
0

0.
5

1.
0

1.
5

2.
0

time = c(6.4, 10.9, 9.8, 7.5, 4.6, 4.9, 6.8, 6.2, 7.9, 6, 4, 4.2, 12.7, 13.4,
12.5, 7.3, 6.1, 7.4, 8.8, 10.2, 12.5, 8.6, 6.1, 5.6, 7.4, 10, 8.3, 6.4,
4.3, 5.6, 13.1, 12, 12, 11.3, 6.1, 9.7)

saw = factor(c("F", "E", "D", "B", "A", "C", "B", "C", "E", "A", "D", "F", "E",
"A", "B", "C", "F", "D", "C", "D", "A", "F", "E", "B", "D", "B", "F", "E",
"C", "A", "A", "F", "C", "D", "B", "E"))

brand = factor(saw, labels = rep(1:3, 2))
species = factor(rep(c(rep("spruce", 6), rep("pine", 6), rep("larch", 6)), 2))
bark = factor(c(rep("no", 18), rep("yes", 18)))
team = factor(rep(c("I", "II", "III", "IV", "V", "VI"), 6))

library(MASS)
boxcox(lm(time ~ species + bark + brand + team))

95

−2 −1 0 1 2

5
10

15
20

25

λ

lo
g−

Li
ke

lih
oo

d

 95%

fixed = lm(log(time) ~ species + bark + brand + team)
sigmahat = summary(fixed)$sigma
anova(fixed)

Analysis of Variance Table
##
Response: log(time)
Df Sum Sq Mean Sq F value Pr(>F)
species 2 1.32602 0.66301 63.5820 1.568e-10 ***
bark 1 0.19832 0.19832 19.0188 0.0001952 ***
brand 2 0.18354 0.09177 8.8007 0.0012778 **
team 5 2.46624 0.49325 47.3021 6.010e-12 ***
Residuals 25 0.26069 0.01043

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(fixed)

##
Call:
lm(formula = log(time) ~ species + bark + brand + team)
##
Residuals:
Min 1Q Median 3Q Max
-0.195730 -0.062530 0.005866 0.060520 0.158912
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.394203 0.056447 42.415 < 2e-16 ***
speciespine -0.469033 0.041689 -11.251 2.82e-11 ***

96

speciesspruce -0.262046 0.041689 -6.286 1.41e-06 ***
barkyes 0.148444 0.034039 4.361 0.000195 ***
brand2 0.006011 0.041689 0.144 0.886511
brand3 -0.148373 0.041689 -3.559 0.001522 **
teamII 0.142463 0.058956 2.416 0.023305 *
teamIII 0.156366 0.058956 2.652 0.013686 *
teamIV -0.139378 0.058956 -2.364 0.026153 *
teamV -0.544639 0.058956 -9.238 1.55e-09 ***
teamVI -0.386701 0.058956 -6.559 7.17e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.1021 on 25 degrees of freedom
Multiple R-squared: 0.9412, Adjusted R-squared: 0.9177
F-statistic: 40.03 on 10 and 25 DF, p-value: 6.883e-13

meanspecies = aggregate(log(time) ~ species, FUN = mean)[, 2]
CIspecies = cbind(meanspecies - qt(0.975, fixed$df.residual) * sigmahat/sqrt(12),

meanspecies + qt(0.975, fixed$df.residual) * sigmahat/sqrt(12))
plot(meanspecies, type = "b", ylim = range(CIspecies), xlab = "Species", ylab = "Average Log-Cutting Time",

xaxt = "n", pch = 16, lwd = 2)
arrows(1:3, CIspecies[, 1], 1:3, CIspecies[, 2], 0.1, 90, 3, lwd = 2)
axis(1, 1:3, c("Larch", "Pine", "Spruce"))

1.
8

2.
0

2.
2

Species

A
ve

ra
ge

 L
og

−
C

ut
tin

g
T

im
e

Larch Pine Spruce

meanbark = aggregate(log(time) ~ bark, FUN = mean)[, 2]
CIbark = cbind(meanbark - qt(0.975, fixed$df.residual) * sigmahat/sqrt(18),

meanbark + qt(0.975, fixed$df.residual) * sigmahat/sqrt(18))
plot(meanbark, type = "b", ylim = range(CIbark), xlab = "Bark", ylab = "Average Log-Cutting Time",

xaxt = "n", pch = 16, lwd = 2)
arrows(1:2, CIbark[, 1], 1:2, CIbark[, 2], 0.1, 90, 3, lwd = 2)

97

axis(1, 1:2, c("No", "Yes"))

1.
95

2.
05

2.
15

Bark

A
ve

ra
ge

 L
og

−
C

ut
tin

g
T

im
e

No Yes

meanbrand = aggregate(log(time) ~ brand, FUN = mean)[, 2]
CIbrand = cbind(meanbrand - qt(0.975, fixed$df.residual) * sigmahat/sqrt(12),

meanbrand + qt(0.975, fixed$df.residual) * sigmahat/sqrt(12))
plot(meanbrand, type = "b", ylim = range(CIbrand), main = "Invalid Approach",

xlab = "Brand", ylab = "Average Log-Cutting Time", xaxt = "n", pch = 16,
lwd = 2)

arrows(1:3, CIbrand[, 1], 1:3, CIbrand[, 2], 0.1, 90, 3, lwd = 2)
axis(1, 1:3, c("1", "2", "3"))

1.
90

2.
00

2.
10

Invalid Approach

Brand

A
ve

ra
ge

 L
og

−
C

ut
tin

g
T

im
e

1 2 3

library(lme4)
lambda = seq(-2, 2, 0.01)

98

loglik = numeric(401)
for (i in 1:401) {

if (lambda[i] == 0) {
Ypower = log(time)

} else {
Ypower = (timeˆlambda[i] - 1)/lambda[i]

}
power = lmer(Ypower ~ species + bark + brand + team + (1 | saw), REML = FALSE)
loglik[i] = (lambda[i] - 1) * sum(log(time)) + logLik(power)[1]

}
CI = range(lambda[loglik > max(loglik) - qchisq(0.95, 1)/2])
print(CI)

[1] -0.80 0.17

plot(lambda, loglik, "l", xlab = expression(lambda), ylab = "Profile Log-Likelihood")
abline(h = max(loglik) - qchisq(0.95, 1)/2, lty = 2)
abline(v = CI, lty = 2)

−2 −1 0 1 2

−
55

−
50

−
45

−
40

−
35

λ

P
ro

fil
e

Lo
g−

Li
ke

lih
oo

d

mixed = lmer(log(time) ~ species + bark + brand + team + (1 | saw), REML = FALSE)
LR = -2 * (logLik(fixed)[1] - summary(mixed)$logLik[1])
pchisq(LR, 1, lower.tail = FALSE)

[1] 0.7236955

mixed = lmer(log(time) ~ species + bark + brand + team + (1 | saw))
sigmahat = as.data.frame(summary(mixed)$varcor)$sdcor
names(sigmahat) = as.data.frame(summary(mixed)$varcor)$grp
print(sigmahatˆ2/sum(sigmahatˆ2))

saw Residual

99

0.1208102 0.8791898

anova(mixed)

Analysis of Variance Table
npar Sum Sq Mean Sq F value
species 2 1.32602 0.66301 69.873
bark 1 0.19832 0.19832 20.900
brand 2 0.10060 0.05030 5.301
team 5 2.46624 0.49325 51.982

summary(mixed, correlation = FALSE)

Linear mixed model fit by REML ['lmerMod']
Formula: log(time) ~ species + bark + brand + team + (1 | saw)
##
REML criterion at convergence: -23
##
Scaled residuals:
Min 1Q Median 3Q Max
-1.7609 -0.6291 0.1416 0.5010 1.5028
##
Random effects:
Groups Name Variance Std.Dev.
saw (Intercept) 0.001304 0.03611
Residual 0.009489 0.09741
Number of obs: 36, groups: saw, 6
##
Fixed effects:
Estimate Std. Error t value
(Intercept) 2.394203 0.059593 40.176
speciespine -0.469033 0.039768 -11.794
speciesspruce -0.262046 0.039768 -6.589
barkyes 0.148444 0.032470 4.572
brand2 0.006011 0.053715 0.112
brand3 -0.148373 0.053715 -2.762
teamII 0.142463 0.056240 2.533
teamIII 0.156366 0.056240 2.780
teamIV -0.139378 0.056240 -2.478
teamV -0.544639 0.056240 -9.684
teamVI -0.386701 0.056240 -6.876

SEbrand = sqrt(sigmahat[1]ˆ2/2 + sigmahat[2]ˆ2/12)
CIbrand = cbind(meanbrand - qt(0.975, 3) * SEbrand, meanbrand + qt(0.975, 3) *

SEbrand)
plot(meanbrand, type = "b", ylim = range(CIbrand), main = "Valid Approach",

100

xlab = "Brand", ylab = "Average Log-Cutting Time", xaxt = "n", pch = 16,
lwd = 2)

arrows(1:3, CIbrand[, 1], 1:3, CIbrand[, 2], 0.1, 90, 3, lwd = 2)
axis(1, 1:3, c("1", "2", "3"))

1.
9

2.
0

2.
1

2.
2

Valid Approach

Brand

A
ve

ra
ge

 L
og

−
C

ut
tin

g
T

im
e

1 2 3

mixed = lmer(log(time) ~ species + bark + brand + (1 | team) + (1 | saw), REML = FALSE)
interact = lmer(log(time) ~ species * bark + brand + (1 | team) + (1 | saw),

REML = FALSE)
LR = -2 * (summary(mixed)$logLik[1] - summary(interact)$logLik[1])
pchisq(LR, 2, lower.tail = FALSE)

[1] 0.4927374

interact = lmer(log(time) ~ species + bark * brand + (1 | team) + (1 | saw),
REML = FALSE)

LR = -2 * (summary(mixed)$logLik[1] - summary(interact)$logLik[1])
pchisq(LR, 2, lower.tail = FALSE)

[1] 0.05753004

interact = lmer(log(time) ~ bark + species * brand + (1 | team) + (1 | saw),
REML = FALSE)

LR = -2 * (summary(mixed)$logLik[1] - summary(interact)$logLik[1])
pchisq(LR, 4, lower.tail = FALSE)

[1] 0.8050065

boreal = read.csv("Reich2018NaturePaperDataAug2018.csv")[, c(1:5, 8:10, 13)]
boreal = boreal[!(boreal$plot_id %in% c("d1", "l1(2)")) & boreal$Asat > 0,]
boreal$year = as.character(boreal$year)

101

boreal$doy = as.character(boreal$doy)
boreal$day = paste0(boreal$year, boreal$doy)

library(lme4)
soil = boreal[match(data.frame(t(unique(boreal[, c(4, 10)]))), data.frame(t(boreal[,

c(4, 10)]))),]
lambda = seq(-2, 2, 0.01)
loglik = numeric(401)
for (i in 1:401) {

if (lambda[i] == 0) {
Ypower = log(soil$soil_water_VWC)

} else {
Ypower = (soil$soil_water_VWCˆlambda[i] - 1)/lambda[i]

}
power = lmer(Ypower ~ warming_treatment + site + year + (1 | plot_id) +

(1 | day), soil, REML = FALSE, lmerControl(optimizer = "Nelder_Mead"))
loglik[i] = (lambda[i] - 1) * sum(log(soil$soil_water_VWC), na.rm = TRUE) +

logLik(power)[1]
}
CI = range(lambda[loglik > max(loglik) - qchisq(0.95, 1)/2])
print(CI)

[1] 0.50 0.84

plot(lambda, loglik, "l", xlab = expression(lambda), ylab = "Profile Log-Likelihood")
abline(h = max(loglik) - qchisq(0.95, 1)/2, lty = 2)
abline(v = CI, lty = 2)

−2 −1 0 1 2

90
0

11
00

13
00

λ

P
ro

fil
e

Lo
g−

Li
ke

lih
oo

d

fit = lmer(sqrt(soil_water_VWC) ~ warming_treatment + site + year + (1 | plot_id) +

(1 | day), soil)

102

sigmahat = as.data.frame(summary(fit)$varcor)$sdcor
names(sigmahat) = as.data.frame(summary(fit)$varcor)$grp
print(sigmahatˆ2/sum(sigmahatˆ2))

day plot_id Residual
0.6861437 0.1894802 0.1243760

anova(fit)

Analysis of Variance Table
npar Sum Sq Mean Sq F value
warming_treatment 1 0.0067888 0.0067888 22.1850
site 1 0.0104774 0.0104774 34.2393
year 2 0.0035804 0.0017902 5.8502

summary(fit, correlation = FALSE)

Linear mixed model fit by REML ['lmerMod']
Formula: sqrt(soil_water_VWC) ~ warming_treatment + site + year + (1 |
plot_id) + (1 | day)
Data: soil
##
REML criterion at convergence: -2328.9
##
Scaled residuals:
Min 1Q Median 3Q Max
-2.71575 -0.60711 -0.05245 0.62072 3.05704
##
Random effects:
Groups Name Variance Std.Dev.
day (Intercept) 0.0016881 0.04109
plot_id (Intercept) 0.0004662 0.02159
Residual 0.0003060 0.01749
Number of obs: 501, groups: day, 49; plot_id, 24
##
Fixed effects:
Estimate Std. Error t value
(Intercept) 0.43526 0.01368 31.815
warming_treatmentwarmed -0.03834 0.00811 -4.727
sitehwrc -0.08486 0.01480 -5.734
year2010 0.03947 0.01473 2.680
year2011 -0.00820 0.01423 -0.576

fit = lmer(sqrt(soil_water_VWC) ~ warming_treatment + site + year + (1 | plot_id) +

(1 | day), soil, REML = FALSE)
interact = lmer(sqrt(soil_water_VWC) ~ warming_treatment * site + year + (1 |

103

plot_id) + (1 | day), soil, REML = FALSE)
LR = -2 * (summary(fit)$logLik[1] - summary(interact)$logLik[1])
pchisq(LR, 1, lower.tail = FALSE)

[1] 0.003921968

interact = lmer(sqrt(soil_water_VWC) ~ warming_treatment * year + site + (1 |

plot_id) + (1 | day), soil, REML = FALSE)
LR = -2 * (summary(fit)$logLik[1] - summary(interact)$logLik[1])
pchisq(LR, 2, lower.tail = FALSE)

[1] 1.992776e-07

interact = lmer(sqrt(soil_water_VWC) ~ warming_treatment + site * year + (1 |

plot_id) + (1 | day), soil, REML = FALSE)
LR = -2 * (summary(fit)$logLik[1] - summary(interact)$logLik[1])
pchisq(LR, 4, lower.tail = FALSE)

[1] 0.0009699407

queru = boreal[boreal$species == "queru",]
lambda = seq(-2, 2, 0.01)
loglik = numeric(401)
for (i in 1:401) {

if (lambda[i] == 0) {
Ypower = log(queru$Asat)

} else {
Ypower = (queru$Asatˆlambda[i] - 1)/lambda[i]

}
power = lmer(Ypower ~ sqrt(soil_water_VWC) + warming_treatment + year +

(1 | plot_id) + (1 | day), queru, REML = FALSE)
loglik[i] = (lambda[i] - 1) * sum(log(queru$Asat)) + logLik(power)[1]

}
CI = range(lambda[loglik > max(loglik) - qchisq(0.95, 1)/2])
print(CI)

[1] 0.58 0.92

plot(lambda, loglik, "l", xlab = expression(lambda), ylab = "Profile Log-Likelihood")
abline(h = max(loglik) - qchisq(0.95, 1)/2, lty = 2)
abline(v = CI, lty = 2)

104

−2 −1 0 1 2

−
18

00
−

14
00

−
10

00
−

60
0

λ

P
ro

fil
e

Lo
g−

Li
ke

lih
oo

d

fit = lmer(Asat ~ soil_water_VWC + warming_treatment + year + (1 | plot_id) +

(1 | day), queru)
sigmahat = as.data.frame(summary(fit)$varcor)$sdcor
names(sigmahat) = as.data.frame(summary(fit)$varcor)$grp
print(sigmahatˆ2/sum(sigmahatˆ2))

day plot_id Residual
0.3909222 0.1426298 0.4664480

anova(fit)

Analysis of Variance Table
npar Sum Sq Mean Sq F value
soil_water_VWC 1 27.952 27.952 2.9695
warming_treatment 1 49.690 49.690 5.2787
year 2 64.830 32.415 3.4436

summary(fit, correlation = FALSE)

Linear mixed model fit by REML ['lmerMod']
Formula: Asat ~ soil_water_VWC + warming_treatment + year + (1 | plot_id) +
(1 | day)
Data: queru
##
REML criterion at convergence: 1295.9
##
Scaled residuals:
Min 1Q Median 3Q Max
-2.3384 -0.6761 -0.0618 0.6042 2.8008
##
Random effects:

105

Groups Name Variance Std.Dev.
day (Intercept) 7.889 2.809
plot_id (Intercept) 2.878 1.697
Residual 9.413 3.068
Number of obs: 241, groups: day, 31; plot_id, 24
##
Fixed effects:
Estimate Std. Error t value
(Intercept) 6.1059 2.0649 2.957
soil_water_VWC 17.0339 10.0635 1.693
warming_treatmentwarmed 1.7488 0.8869 1.972
year2010 3.4977 1.5805 2.213
year2011 0.4586 1.4596 0.314

fit = lmer(Asat ~ sqrt(soil_water_VWC) + warming_treatment + year + (1 | plot_id) +

(1 | day), queru, REML = FALSE)
interact = lmer(Asat ~ sqrt(soil_water_VWC) * warming_treatment + year + (1 |

plot_id) + (1 | day), queru, REML = FALSE)
LR = -2 * (summary(fit)$logLik[1] - summary(interact)$logLik[1])
pchisq(LR, 1, lower.tail = FALSE)

[1] 6.398453e-05

interact = lmer(Asat ~ sqrt(soil_water_VWC) + warming_treatment * year + (1 |

plot_id) + (1 | day), queru, REML = FALSE)
LR = -2 * (summary(fit)$logLik[1] - summary(interact)$logLik[1])
pchisq(LR, 2, lower.tail = FALSE)

[1] 0.0470728

interact = lmer(Asat ~ sqrt(soil_water_VWC) * year + warming_treatment + (1 |

plot_id) + (1 | day), queru, REML = FALSE)
LR = -2 * (summary(fit)$logLik[1] - summary(interact)$logLik[1])
pchisq(LR, 4, lower.tail = FALSE)

[1] 0.09448143

106

4 Robust Regression

library(faraway)
library(xtable)
fit = lm(Species ~ Elevation, gala)
print(xtable(summary(fit)), comment = FALSE)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 11.3351 19.2053 0.59 0.5598

Elevation 0.2008 0.0346 5.80 0.0000

outlier = cooks.distance(fit) == max(cooks.distance(fit))
removed = lm(Species ~ Elevation, gala, !outlier)
plot(Species ~ Elevation, gala, col = 6 * outlier + 1, pch = 16)
abline(fit, col = 2, lty = 2, lwd = 2)
abline(removed, col = 4, lty = 4, lwd = 2)
legend("topleft", c("Least Squares", "Outlier Removed", "Outlier"), col = c(2,

4, 7), lty = c(2, 4, NA), lwd = c(2, 2, NA), pch = c(NA, NA, 16), cex = 0.5)

0 500 1000 1500

0
10

0
20

0
30

0
40

0

Elevation

S
pe

ci
es

Least Squares
Outlier Removed
Outlier

library(quantreg)
fit = rq(Species ~ Elevation, gala, tau = 0.5)
print(xtable(summary(fit)$coefficients), comment = FALSE)

coefficients lower bd upper bd
(Intercept) -5.86 -9.78 9.75

Elevation 0.21 0.11 0.28

removed = rq(Species ~ Elevation, gala, !outlier, tau = 0.5)
plot(Species ~ Elevation, gala, col = 6 * outlier + 1, pch = 16)

107

abline(fit, col = 2, lty = 2, lwd = 2)
abline(removed, col = 4, lty = 4, lwd = 2)
legend("topleft", c("Least Absolute Deviation", "Outlier Removed", "Outlier"),

col = c(2, 4, 7), lty = c(2, 4, NA), lwd = c(2, 2, NA), pch = c(NA, NA,
16), cex = 0.5)

0 500 1000 1500

0
10

0
20

0
30

0
40

0

Elevation

S
pe

ci
es

Least Absolute Deviation
Outlier Removed
Outlier

library(MASS)
fit = rlm(Species ~ Elevation, data = gala)
print(xtable(summary(fit)$coefficients), comment = FALSE)

Value Std. Error t value
(Intercept) 0.39 9.76 0.04

Elevation 0.21 0.02 11.75

removed = rq(Species ~ Elevation, data = gala, subset = !outlier)
plot(Species ~ Elevation, gala, col = 6 * outlier + 1, pch = 16)
abline(fit, col = 2, lty = 2, lwd = 2)
abline(removed, col = 4, lty = 4, lwd = 2)
legend("topleft", c("Huber Regression", "Outlier Removed", "Outlier"), col = c(2,

4, 7), lty = c(2, 4, NA), lwd = c(2, 2, NA), pch = c(NA, NA, 16), cex = 0.5)

108

0 500 1000 1500

0
10

0
20

0
30

0
40

0

Elevation

S
pe

ci
es

Huber Regression
Outlier Removed
Outlier

fit = lqs(Species ~ Elevation, gala)
print(xtable(data.frame(fit$coefficients)), comment = FALSE)

fit.coefficients
(Intercept) -2.63

Elevation 0.15

removed = lqs(Species ~ Elevation, gala, subset = !outlier)
plot(Species ~ Elevation, gala, col = 6 * outlier + 1, pch = 16)
abline(fit, col = 2, lty = 2, lwd = 2)
abline(removed, col = 4, lty = 4, lwd = 2)
legend("topleft", c("Least Trimmed Squares", "Outlier Removed", "Outlier"),

col = c(2, 4, 7), lty = c(2, 4, NA), lwd = c(2, 2, NA), pch = c(NA, NA,
16), cex = 0.5)

0 500 1000 1500

0
10

0
20

0
30

0
40

0

Elevation

S
pe

ci
es

Least Trimmed Squares
Outlier Removed
Outlier

109

library(faraway)
n = dim(gala)[1]
fit = lm(Species ~ Elevation, gala)
outliers = cooks.distance(fit) > 1
fit = lm(Species ~ Elevation, gala, !outliers)
while (sum(cooks.distance(fit) > 1) > 0) {

outliers[!outliers] = cooks.distance(fit) > 1
fit = lm(Species ~ Elevation, gala, !outliers)

}

library(quantreg)
library(MASS)
library(xtable)
nboot = 10000
betaboot = matrix(0, nboot, 5)
for (i in 1:nboot) {

fit = lm(Species ~ Elevation, gala, sample(n, replace = TRUE))
betaboot[i, 1] = fit$coefficients[1]
fit = lm(Species ~ Elevation, gala, sample((1:n)[!outliers], replace = TRUE))
betaboot[i, 2] = fit$coefficients[1]
fit = rq(Species ~ Elevation, gala, sample(n, replace = TRUE), tau = 0.5)
betaboot[i, 3] = fit$coefficients[1]
fit = rlm(Species ~ Elevation, data = gala, subset = sample(n, replace = TRUE),

maxit = 1000)
betaboot[i, 4] = fit$coefficients[1]
fit = lqs(Species ~ Elevation, gala, subset = sample(n, replace = TRUE))
betaboot[i, 5] = fit$coefficients[1]

}
boot = matrix(0, 5, 2)
boot[, 1] = apply(betaboot, 2, median)
boot[, 2] = apply(betaboot, 2, sd)
rownames(boot) = c("Least Squares", "Outliers Removed", "Least Absolute Deviation",

"Huber Regression", "Least Trimmed Squares")
colnames(boot) = c("Bootstrap Coefficient", "Bootstrap Standard Error")
print(xtable(boot), comment = FALSE)

Bootstrap Coefficient Bootstrap Standard Error
Least Squares 9.64 15.93

Outliers Removed -10.63 10.93
Least Absolute Deviation -5.16 12.29

Huber Regression -0.07 13.29
Least Trimmed Squares -2.24 14.40

110

5 Penalized Regression

Ridge Regression

n = 1000
p = 20
beta = rep(5/sqrt(p), p)
X = matrix(rnorm(n * p), n)
X = t(t(X)/sqrt(colSums(Xˆ2)))
nsim = 1000
Y = drop(X %*% beta) + matrix(rnorm(n * nsim), n)
Y = t(t(Y)/apply(Y, 2, sd))/sqrt(1 - nˆ(-1))
lambda = seq(0, 2, 0.01)
Bias = numeric(201)
Var = numeric(201)
MSE = numeric(201)
for (k in 1:201) {

betaridge = solve(crossprod(X) + lambda[k] * diag(p), crossprod(X, Y))
Bias[k] = sum(rowMeans(betaridge) - beta)
Var[k] = sum(rowMeans((betaridge - rowMeans(betaridge))ˆ2))
MSE[k] = sum(rowMeans((betaridge - beta)ˆ2))

}
plot(lambda, MSE, "l", ylim = c(0, max(MSE)), xlab = expression(lambda), ylab = NA,

col = "purple", lwd = 2)
lines(lambda, abs(Bias), col = "red", lwd = 2)
lines(lambda, Var, col = "blue", lwd = 2)
abline(v = lambda[which.min(MSE)], lty = 2, lwd = 2)
legend("right", c("Bias", "Variance", "MSE", "Minimum"), col = c("red", "blue",

"purple", "black"), lty = c(rep(1, 3), 2), lwd = rep(2, 4), cex = 0.5)

0.0 0.5 1.0 1.5 2.0

0
5

10
15

20

λ

Bias
Variance
MSE
Minimum

111

betaridge = solve(crossprod(X) + lambda[which.min(MSE)] * diag(p), crossprod(X,
Y))

hist(betaridge[1,], "FD", freq = FALSE, main = NA, xlab = "Ridge Coefficients")
abline(v = beta[1], col = 2, lty = 2, lwd = 2)

Ridge Coefficients

D
en

si
ty

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

library(MASS)
n = 1000
p = 20
beta = rep(5/sqrt(p), p)
Sigma = 0.5ˆabs(outer(1:p, 1:p, "-"))
X = mvrnorm(n, numeric(p), Sigma)
X = t(t(X)/sqrt(colSums(Xˆ2)))
nsim = 1000
Y = drop(X %*% beta) + matrix(rnorm(n * nsim), n)
Y = t(t(Y)/apply(Y, 2, sd))/sqrt(1 - nˆ(-1))
lambda = seq(0, 2, 0.01)
Bias = numeric(201)
Var = numeric(201)
MSE = numeric(201)
for (k in 1:201) {

betaridge = solve(crossprod(X) + lambda[k] * diag(p), crossprod(X, Y))
Bias[k] = sum(rowMeans(betaridge) - beta)
Var[k] = sum(rowMeans((betaridge - rowMeans(betaridge))ˆ2))
MSE[k] = sum(rowMeans((betaridge - beta)ˆ2))

}
plot(lambda, MSE, "l", ylim = c(0, max(MSE)), xlab = expression(lambda), ylab = NA,

col = "purple", lwd = 2)
lines(lambda, abs(Bias), col = "red", lwd = 2)
lines(lambda, Var, col = "blue", lwd = 2)

112

abline(v = lambda[which.min(MSE)], lty = 2, lwd = 2)
legend("right", c("Bias", "Variance", "MSE", "Minimum"), col = c("red", "blue",

"purple", "black"), lty = c(rep(1, 3), 2), lwd = rep(2, 4), cex = 0.5)

0.0 0.5 1.0 1.5 2.0

0
5

10
20

30

λ

Bias
Variance
MSE
Minimum

betaridge = solve(crossprod(X) + lambda[which.min(MSE)] * diag(p), crossprod(X,
Y))

hist(betaridge[1,], "FD", freq = FALSE, main = NA, xlab = "Ridge Coefficients")
abline(v = beta[1], col = 2, lty = 2, lwd = 2)

Ridge Coefficients

D
en

si
ty

−1.0 −0.5 0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n = 1000
p = 100
beta = rnorm(p)
X = matrix(rnorm(n * p), n)
X = t(t(X)/sqrt(colSums(Xˆ2)))
Y = X %*% beta + rnorm(n)

113

Y = Y/sd(Y)/sqrt(1 - nˆ(-1))

lambda = seq(0, 20, 0.1)
betaridge = matrix(0, 201, 100)
for (k in 1:201) {

betaridge[k,] = solve(crossprod(X) + lambda[k] * diag(p), crossprod(X,
Y))

}
plot(lambda, sqrt(rowSums(betaridgeˆ2)), "l", xlab = expression(lambda), ylab = "Ridge Estimator 2-Norm",

lwd = 2)

0 5 10 15 20

2
4

6
8

10
14

λ

R
id

ge
 E

st
im

at
or

 2
−

N
or

m

library(glmnet)
lambdamin = cv.glmnet(X, Y, alpha = 0)$lambda.min
print(lambdamin)

[1] 0.8975042

betaridge = solve(crossprod(X) + lambdamin * diag(p), crossprod(X, Y))
betaols = solve(crossprod(X), crossprod(X, Y))
par(pty = "s")
plot(beta, betaridge, xlab = "True Coefficients", ylab = "Ridge Coefficients",

pch = 16, cex = 0.5, asp = 1)
abline(h = 0, lty = 2)
abline(0, 1, col = 2, lty = 2, lwd = 2)

114

−2 −1 0 1 2
−

2
−

1
0

1
2

True Coefficients

R
id

ge
 C

oe
ffi

ci
en

ts

plot(betaols, betaridge, xlab = "Least Squares Coefficients", ylab = "Ridge Coefficients",
pch = 16, cex = 0.5, asp = 1)

abline(h = 0, lty = 2)
abline(0, 1, col = 2, lty = 2, lwd = 2)

−3 −1 0 1 2 3 4

−
3

−
1

0
1

2
3

Least Squares Coefficients

R
id

ge
 C

oe
ffi

ci
en

ts

library(MASS)
n = 1000
p = 100
beta = rnorm(p)
Sigma = 0.5ˆabs(outer(1:p, 1:p, "-"))
X = mvrnorm(n, numeric(p), Sigma)
X = t(t(X)/sqrt(colSums(Xˆ2)))
Y = X %*% beta + rnorm(n)
Y = Y/sd(Y)/sqrt(1 - nˆ(-1))

115

lambda = seq(0, 20, 0.1)
betaridge = matrix(0, 201, 100)
for (k in 1:201) {

betaridge[k,] = solve(crossprod(X) + lambda[k] * diag(p), crossprod(X,
Y))

}
plot(lambda, sqrt(rowSums(betaridgeˆ2)), "l", xlab = expression(lambda), ylab = "Ridge Estimator 2-Norm",

lwd = 2)

0 5 10 15 20

2
4

6
8

10
14

λ

R
id

ge
 E

st
im

at
or

 2
−

N
or

m

library(glmnet)
lambdamin = cv.glmnet(X, Y, alpha = 0)$lambda.min
print(lambdamin)

[1] 1.245682

betaridge = solve(crossprod(X) + lambdamin * diag(p), crossprod(X, Y))
betaols = solve(crossprod(X), crossprod(X, Y))
par(pty = "s")
plot(beta, betaridge, xlab = "True Coefficients", ylab = "Ridge Coefficients",

pch = 16, cex = 0.5, asp = 1)
abline(h = 0, lty = 2)
abline(0, 1, col = 2, lty = 2, lwd = 2)

116

−2 −1 0 1 2
−

2
−

1
0

1
2

True Coefficients

R
id

ge
 C

oe
ffi

ci
en

ts

plot(betaols, betaridge, xlab = "Least Squares Coefficients", ylab = "Ridge Coefficients",
pch = 16, cex = 0.5, asp = 1)

abline(h = 0, lty = 2)
abline(0, 1, col = 2, lty = 2, lwd = 2)

−4 −2 0 2 4

−
4

−
2

0
2

4

Least Squares Coefficients

R
id

ge
 C

oe
ffi

ci
en

ts

library(faraway)
n = dim(seatpos)[1]
fit = lm(hipcenter ~ ., seatpos)
print(fit$coefficients[-1])

Age Weight HtShoes Ht Seated Arm
0.77571620 0.02631308 -2.69240774 0.60134458 0.53375170 -1.32806864
Thigh Leg
-1.14311888 -6.43904627

117

vif(fit)

Age Weight HtShoes Ht Seated Arm Thigh
1.997931 3.647030 307.429378 333.137832 8.951054 4.496368 2.762886
Leg
6.694291

Y = seatpos$hipcenter
Y = Y/sd(Y)/sqrt(1 - nˆ(-1))
X = as.matrix(seatpos[, -9])
X = t(t(X) - colMeans(X))
X = t(t(X)/sqrt(colSums(Xˆ2)))
loglambda = seq(-3, 7, 0.01)

library(glmnet)
betaridge = matrix(0, 1001, 8)
for (k in 1:1001) {

betaridge[k,] = solve(crossprod(X) + exp(loglambda[k]) * diag(8), crossprod(X,
Y))

}
matplot(loglambda, betaridge, "l", 1, 2, col = 1:8, xlab = expression("log" ~

lambda), ylab = "Ridge Coefficients")
abline(h = 0, lty = 2)

−2 0 2 4 6

−
2.

0
−

1.
0

0.
0

1.
0

log λ

R
id

ge
 C

oe
ffi

ci
en

ts

ridge = glmnet(X, Y, alpha = 0)
plot(ridge, "lambda", label = TRUE)

118

−2 0 2 4 6

−
1.

5
−

0.
5

0.
5

Log Lambda

C
oe

ffi
ci

en
ts

8 8 8 8 8

1

2

34

5

67

8

plot(ridge, label = TRUE)

0 1 2 3 4 5 6

−
1.

5
−

0.
5

0.
5

L1 Norm

C
oe

ffi
ci

en
ts

8 8 8 8 8 8 8

1

2

34

5

67

8

error = matrix(0, 1001, n)
for (k in 1:1001) {

for (i in 1:n) {
betaridge = drop(coef(glmnet(X[-i,], Y[-i], alpha = 0, lambda = exp(loglambda[k]))))
error[k, i] = (Y[i] - crossprod(c(1, X[i,]), betaridge))ˆ2

}
}
MSPE = rowMeans(error)
lambdamin = exp(loglambda[which.min(MSPE)])
print(lambdamin)

119

[1] 0.6187834

min(MSPE)

[1] 0.4163351

plot(loglambda, MSPE, "l", xlab = expression("log" ~ lambda), ylab = "Mean Square Prediction Error",
lwd = 2)

abline(v = log(lambdamin), col = 2, lty = 2, lwd = 2)

−2 0 2 4 6

0.
4

0.
6

0.
8

1.
0

log λ

M
ea

n
S

qu
ar

e
P

re
di

ct
io

n
E

rr
or

cvridge = cv.glmnet(X, Y, alpha = 0)
print(cvridge$lambda.min)

[1] 0.6185805

min(cvridge$cvm)

[1] 0.4183451

plot(cvridge)

120

−2 0 2 4 6

0.
4

0.
6

0.
8

1.
0

1.
2

Log(λ)

M
ea

n−
S

qu
ar

ed
 E

rr
or

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

betaridge = drop(solve(crossprod(X) + lambdamin * diag(8), crossprod(X, Y)))
print(betaridge)

Age Weight HtShoes Ht Seated Arm Thigh
0.7529740 -0.3923536 -0.8512323 -0.8514846 -0.6131235 -0.4721104 -0.5223654
Leg
-1.0946116

nboot = 1000
betaols = matrix(0, nboot, 8)
betaridge = matrix(0, nboot, 8)
for (i in 1:nboot) {

ind = sample(n, replace = TRUE)
betaols[i,] = lm(Y ~ X, subset = ind)$coefficients[-1]
betaridge[i,] = drop(glmnet(X[ind,], Y[ind], alpha = 0, lambda = lambdamin)$beta)

}
hist(betaols[, 3], "FD", freq = FALSE, main = NA, xlab = "Least Squares Coefficients")

121

Least Squares Coefficients

D
en

si
ty

−30 −20 −10 0 10 20 30

0.
00

0.
02

0.
04

hist(betaridge[, 3], "FD", freq = FALSE, main = NA, xlab = "Ridge Coefficients")

Ridge Coefficients

D
en

si
ty

−1.6 −1.4 −1.2 −1.0 −0.8 −0.6 −0.4 −0.2

0.
0

0.
5

1.
0

1.
5

cor(betaols[, 3], betaols[, 4])

[1] -0.8592313

cor(betaridge[, 3], betaridge[, 4])

[1] 0.9864823

plot(betaols[, 3:4], xlab = "HtShoes Coefficients", ylab = "Ht Coefficients",
pch = 16, cex = 0.5)

abline(h = 0, lty = 2)
abline(v = 0, lty = 2)

122

−30 −20 −10 0 10 20 30

−
30

−
10

10
30

HtShoes Coefficients

H
t C

oe
ffi

ci
en

ts

plot(betaridge[, 3:4], xlab = "HtShoes Coefficients", ylab = "Ht Coefficients",
pch = 16, cex = 0.5)

abline(0, 1, col = 2, lty = 2, lwd = 2)

−1.4 −1.2 −1.0 −0.8 −0.6 −0.4 −0.2

−
1.

4
−

1.
0

−
0.

6
−

0.
2

HtShoes Coefficients

H
t C

oe
ffi

ci
en

ts

Lasso Regression

n = 1000
p = 100
beta = rnorm(p)
X = matrix(rnorm(n * p), n)
X = t(t(X)/sqrt(colSums(Xˆ2)))
Y = X %*% beta + rnorm(n)
Y = Y/sd(Y)/sqrt(1 - nˆ(-1))

123

library(glmnet)
lambda = seq(0, 1, 0.01)
betalasso = matrix(0, 101, 100)
for (k in 1:101) {

betalasso[k,] = drop(glmnet(X, Y, lambda = lambda[k])$beta)
}
plot(lambda, rowSums(abs(betalasso)), "l", xlab = expression(lambda), ylab = "Lasso Estimator 1-Norm",

lwd = 2)

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80
10

0

λ

La
ss

o
E

st
im

at
or

 1
−

N
or

m

lambdamin = cv.glmnet(X, Y)$lambda.min
print(lambdamin)

[1] 0.04537194

betalasso = drop(glmnet(X, Y, lambda = lambdamin)$beta)
betaols = lm(Y ~ X)$coefficients[-1]
par(pty = "s")
plot(beta, betalasso, xlab = "True Coefficients", ylab = "Lasso Coefficients",

pch = 16, cex = 0.5, asp = 1)
abline(h = 0, lty = 2)
abline(0, 1, col = 2, lty = 2, lwd = 2)

124

−2 −1 0 1 2
−

2
−

1
0

1
2

True Coefficients

La
ss

o
C

oe
ffi

ci
en

ts

plot(betaols, betalasso, xlab = "Least Squares Coefficients", ylab = "Lasso Coefficients",
pch = 16, cex = 0.5, asp = 1)

abline(h = 0, lty = 2)
abline(0, 1, col = 2, lty = 2, lwd = 2)

−3 −1 0 1 2 3

−
3

−
1

0
1

2
3

4

Least Squares Coefficients

La
ss

o
C

oe
ffi

ci
en

ts

library(MASS)
n = 1000
p = 100
beta = rnorm(p)
Sigma = 0.5ˆabs(outer(1:p, 1:p, "-"))
X = mvrnorm(n, numeric(p), Sigma)
X = t(t(X)/sqrt(colSums(Xˆ2)))
Y = X %*% beta + rnorm(n)
Y = Y/sd(Y)/sqrt(1 - nˆ(-1))

125

library(glmnet)
lambda = seq(0, 1, 0.01)
betalasso = matrix(0, 101, 100)
for (k in 1:101) {

betalasso[k,] = drop(glmnet(X, Y, lambda = lambda[k])$beta)
}
plot(lambda, rowSums(abs(betalasso)), "l", xlab = expression(lambda), ylab = "Lasso Estimator 1-Norm",

lwd = 2)

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80
12

0

λ

La
ss

o
E

st
im

at
or

 1
−

N
or

m

lambdamin = cv.glmnet(X, Y)$lambda.min
print(lambdamin)

[1] 0.03747625

betalasso = drop(glmnet(X, Y, lambda = lambdamin)$beta)
betaols = lm(Y ~ X)$coefficients[-1]
par(pty = "s")
plot(beta, betalasso, xlab = "True Coefficients", ylab = "Lasso Coefficients",

pch = 16, cex = 0.5, asp = 1)
abline(h = 0, lty = 2)
abline(0, 1, col = 2, lty = 2, lwd = 2)

126

−3 −2 −1 0 1 2
−

3
−

2
−

1
0

1

True Coefficients

La
ss

o
C

oe
ffi

ci
en

ts

plot(betaols, betalasso, xlab = "Least Squares Coefficients", ylab = "Lasso Coefficients",
pch = 16, cex = 0.5, asp = 1)

abline(h = 0, lty = 2)
abline(0, 1, col = 2, lty = 2, lwd = 2)

−4 −2 0 2 4

−
4

−
2

0
2

Least Squares Coefficients

La
ss

o
C

oe
ffi

ci
en

ts

library(faraway)
n = dim(seatpos)[1]
fit = lm(hipcenter ~ ., seatpos)
print(fit$coefficients[-1])

Age Weight HtShoes Ht Seated Arm
0.77571620 0.02631308 -2.69240774 0.60134458 0.53375170 -1.32806864
Thigh Leg
-1.14311888 -6.43904627

127

vif(fit)

Age Weight HtShoes Ht Seated Arm Thigh
1.997931 3.647030 307.429378 333.137832 8.951054 4.496368 2.762886
Leg
6.694291

Y = seatpos$hipcenter
Y = Y/sd(Y)/sqrt(1 - nˆ(-1))
X = as.matrix(seatpos[, -9])
X = t(t(X) - colMeans(X))
X = t(t(X)/sqrt(colSums(Xˆ2)))
loglambda = seq(-8, 0, 0.01)

library(glmnet)
betalasso = matrix(0, 801, 8)
for (k in 1:801) {

betalasso[k,] = drop(glmnet(X, Y, lambda = exp(loglambda[k]))$beta)
}
matplot(loglambda, betalasso, "l", 1, 2, col = 1:8, xlab = expression("log" ~

lambda), ylab = "Lasso Coefficients")
abline(h = 0, lty = 2)

−8 −6 −4 −2 0

−
2

−
1

0
1

log λ

La
ss

o
C

oe
ffi

ci
en

ts

lasso = glmnet(X, Y)
plot(lasso, "lambda", label = TRUE)

128

−7 −6 −5 −4 −3 −2 −1 0

−
2

−
1

0
1

Log Lambda

C
oe

ffi
ci

en
ts

7 7 6 6 5 3 2 0

1

2

3

4
5

67

8

plot(lasso, label = TRUE)

0 1 2 3 4 5 6 7

−
2

−
1

0
1

L1 Norm

C
oe

ffi
ci

en
ts

0 2 2 2 2 4 6 7

1

2

3

4
5

67

8

library(lars)
lasso = lars(X, Y)
lambda = lasso$lambda
nsteps = length(lambda)
print(lambda)

[1] 4.924919395 4.121719628 0.974055116 0.502716844 0.405267767 0.194168434
[7] 0.098477117 0.021131559 0.017520553 0.001050538

129

print(data.frame(lasso$beta))

Age Weight HtShoes Ht Seated Arm Thigh
0 0.0000000 0.00000000 0.000000 0.0000000 0.0000000 0.0000000 0.00000000
1 0.0000000 0.00000000 0.000000 -0.8031998 0.0000000 0.0000000 0.00000000
2 0.0000000 0.00000000 0.000000 -2.4514053 0.0000000 0.0000000 0.00000000
3 0.4463463 0.00000000 0.000000 -2.5645352 0.0000000 0.0000000 0.00000000
4 0.5545848 0.00000000 0.000000 -2.5022093 0.0000000 0.0000000 -0.09684545
5 0.8096615 0.00000000 -1.396380 -0.9416681 0.0000000 0.0000000 -0.34045568
6 1.0210143 0.00000000 -2.168355 0.0000000 0.0000000 -0.2364043 -0.42230734
7 1.1755669 0.00000000 -2.068416 0.0000000 0.0000000 -0.4171627 -0.46751531
8 1.1797593 0.02162282 -2.080253 0.0000000 0.0000000 -0.4266430 -0.46719410
9 1.2140630 0.10200028 -2.436091 0.0000000 0.2633237 -0.4516702 -0.43849895
10 1.2320899 0.09730313 -3.102046 0.6943939 0.2720472 -0.4627426 -0.45778532
Leg
0 0.000000
1 0.000000
2 -1.648206
3 -1.997729
4 -2.084393
5 -2.277647
6 -2.288418
7 -2.284386
8 -2.287087
9 -2.255455
10 -2.265018

plot(lasso, "step")

130

* * *
* *

*
* * * * *

0 2 4 6 8 10

−
3

−
2

−
1

0
1

Step

S
ta

nd
ar

di
ze

d
C

oe
ffi

ci
en

ts

* * * * * * * * * * ** * * * *

*

* * *
*

*

*

*

* * *

*

* * * *

*

* * * * * * * * *
* *

* * * * * *
* * * * *

* * * * *
* * * * * *

* *

*
* * * * * * * *

LASSO

3
8

6
2

4
1

0 1 2 3 4 5 6 7 8 9 10

betalasso = matrix(0, nsteps + 1, 8)
for (i in 2:nsteps) {

betalasso[i,] = betalasso[i - 1,]
err = Inf
while (err > 1e-05) {

betacurr = betalasso[i,]
for (j in 1:8) {

r = Y - X[, -j] %*% betalasso[i, -j]
z = sum(X[, j] * r)
betalasso[i, j] = sign(z) * max(abs(z) - lambda[i], 0)

}
err = sum(abs((betalasso[i,] - betacurr)))/sum(abs(betacurr))

}
}
betalasso[nsteps + 1,] = solve(crossprod(X), crossprod(X, Y))
par(mar = c(5.1, 4.1, 4.1, 4.1))
matplot(0:nsteps, betalasso, "b", 1, 2, pch = 16, col = 1:8, cex = 0.5, xlab = "Step",

ylab = "Lasso Path")
abline(h = 0, lty = 2)
abline(v = 0:10, lty = 2)
axis(4, betalasso[nsteps + 1,], colnames(X), las = 2, cex.axis = 0.5)
axis(3, 0:nsteps, 0:nsteps, cex.axis = 0.5)

131

0 2 4 6 8 10

−
3

−
2

−
1

0
1

Step

La
ss

o
P

at
h

HtShoes

Leg

Arm

Weight
Seated

Ht

Age

0 1 2 3 4 5 6 7 8 9 10

error = matrix(0, 801, n)
for (k in 1:801) {

for (i in 1:n) {
betalasso = drop(coef(glmnet(X[-i,], Y[-i], lambda = exp(loglambda[k]))))
error[k, i] = (Y[i] - crossprod(c(1, X[i,]), betalasso))ˆ2

}
}
MSPE = rowMeans(error)
lambdamin = exp(loglambda[which.min(MSPE)])
print(lambdamin)

[1] 0.1200316

min(MSPE)

[1] 0.4539938

plot(loglambda, MSPE, "l", xlab = expression("log" ~ lambda), ylab = "Mean Square Prediction Error",
lwd = 2)

abline(v = log(lambdamin), col = 2, lty = 2, lwd = 2)

132

−8 −6 −4 −2 0

0.
5

0.
7

0.
9

log λ

M
ea

n
S

qu
ar

e
P

re
di

ct
io

n
E

rr
or

cvlasso = cv.glmnet(X, Y)
print(cvlasso$lambda.min)

[1] 0.1132459

min(cvlasso$cvm)

[1] 0.4365229

plot(cvlasso)

−7 −6 −5 −4 −3 −2 −1 0

0.
4

0.
6

0.
8

1.
0

1.
2

Log(λ)

M
ea

n−
S

qu
ar

ed
 E

rr
or

7 7 7 5 6 6 6 5 4 3 2 2 2

betalasso = drop(glmnet(X, Y, lambda = lambdamin)$beta)
print(betalasso)

Age Weight HtShoes Ht Seated Arm Thigh
0.2217171 0.0000000 0.0000000 -2.5075853 0.0000000 0.0000000 0.0000000

133

Leg
-1.8218406

nboot = 1000
betaols = matrix(0, nboot, 8)
betalasso = matrix(0, nboot, 8)
for (i in 1:nboot) {

ind = sample(n, replace = TRUE)
betaols[i,] = lm(Y ~ X, subset = ind)$coefficients[-1]
betalasso[i,] = drop(glmnet(X[ind,], Y[ind], lambda = lambdamin)$beta)

}
hist(betaols[, 3], "FD", freq = FALSE, main = NA, xlab = "Least Squares Coefficients")

Least Squares Coefficients

D
en

si
ty

−30 −20 −10 0 10 20

0.
00

0.
02

0.
04

hist(betalasso[, 3], "FD", freq = FALSE, main = NA, xlab = "Lasso Coefficients")

Lasso Coefficients

D
en

si
ty

−5 −4 −3 −2 −1 0

0.
0

1.
0

2.
0

3.
0

plot(betaols[, 3:4], xlab = "HtShoes Coefficients", ylab = "Ht Coefficients",
pch = 16, cex = 0.25)

134

abline(h = 0, lty = 2)
abline(v = 0, lty = 2)

−30 −20 −10 0 10 20

−
20

0
10

20
30

HtShoes Coefficients

H
t C

oe
ffi

ci
en

ts

plot(betalasso[, 3:4], xlab = "HtShoes Coefficients", ylab = "Ht Coefficients",
pch = 16, cex = 0.25)

−5 −4 −3 −2 −1 0

−
5

−
4

−
3

−
2

−
1

0

HtShoes Coefficients

H
t C

oe
ffi

ci
en

ts

135

6 Multiple Testing

Testing the Global Null

library(qqconf)
n = 100
p = 10
beta = numeric(p)
alpha = 0.05
nsim = 1000
t = matrix(0, p, nsim)
for (i in 1:nsim) {

Y = matrix(rnorm(p * n, beta, 1), p)
t[, i] = sqrt(n) * rowMeans(Y)/apply(Y, 1, sd)

}
pval = 2 * pt(abs(t), n - 1, lower.tail = FALSE)
bonferroni = apply(pval, 2, min)
fisher = -2 * colSums(log(pval))
pval = apply(pval, 2, sort)
simes = colSums(pval <= (1:p) * alpha/p)
mean(bonferroni < alpha/p)

[1] 0.054

mean(fisher > qchisq(1 - alpha, 2 * p))

[1] 0.063

mean(simes > 0)

[1] 0.058

par(mfrow = c(1, 2))
hist(t, "FD", freq = FALSE, main = "No Signals", xlab = "Student's t Statistics")
curve(dt(x, n - 1), add = TRUE, col = 2, lty = 2, lwd = 2)
qq_conf_plot(as.vector(t), qt, dparams = list(df = n - 1), points_params = list(pch = 16,

cex = 0.25))

136

No Signals

Student's t Statistics

D
en

si
ty

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

−4 −2 0 2 4

−
2

0
2

4

Expected quantiles

O
bs

er
ve

d
qu

an
til

es
hist(pval, "FD", freq = FALSE, main = "No Signals", xlab = "P-Values")
abline(h = 1, col = 2, lty = 2, lwd = 2)
qq_conf_plot(as.vector(pval), qunif, log10 = TRUE, points_params = list(pch = 16,

cex = 0.25))

No Signals

P−Values

D
en

si
ty

0.0 0.4 0.8

0.
0

0.
4

0.
8

0 1 2 3 4

0
1

2
3

4

−log10(Expected quantiles)

−
lo

g 1
0(

O
bs

er
ve

d
qu

an
til

es
)

library(qqconf)
n = 100
p = 10
beta = c(0.25, numeric(p - 1))
alpha = 0.05
nsim = 1000

137

t = matrix(0, p, nsim)
for (i in 1:nsim) {

Y = matrix(rnorm(p * n, beta, 1), p)
t[, i] = sqrt(n) * rowMeans(Y)/apply(Y, 1, sd)

}
pval = 2 * pt(abs(t), n - 1, lower.tail = FALSE)
bonferroni = apply(pval, 2, min)
fisher = -2 * colSums(log(pval))
pval = apply(pval, 2, sort)
simes = colSums(pval <= (1:p) * alpha/p)
mean(bonferroni < alpha/p)

[1] 0.384

mean(fisher > qchisq(1 - alpha, 2 * p))

[1] 0.307

mean(simes > 0)

[1] 0.394

par(mfrow = c(1, 2))
hist(t, "FD", freq = FALSE, main = "Few Strong Signals", xlab = "Student's t Statistics")
curve(dt(x, n - 1), add = TRUE, col = 2, lty = 2, lwd = 2)
qq_conf_plot(as.vector(t), qt, dparams = list(df = n - 1), points_params = list(pch = 16,

cex = 0.25))

Few Strong Signals

Student's t Statistics

D
en

si
ty

−4 0 2 4 6

0.
00

0.
10

0.
20

0.
30

−4 −2 0 2 4

−
4

−
2

0
2

4
6

Expected quantiles

O
bs

er
ve

d
qu

an
til

es

hist(pval, "FD", freq = FALSE, main = "Few Strong Signals", xlab = "P-Values")
abline(h = 1, col = 2, lty = 2, lwd = 2)

138

qq_conf_plot(as.vector(pval), qunif, log10 = TRUE, points_params = list(pch = 16,
cex = 0.25))

Few Strong Signals

P−Values

D
en

si
ty

0.0 0.4 0.8

0.
0

0.
5

1.
0

1.
5

2.
0

0 1 2 3 4

0
2

4
6

8
−log10(Expected quantiles)

−
lo

g 1
0(

O
bs

er
ve

d
qu

an
til

es
)

library(qqconf)
n = 100
p = 10
beta = rep(0.1, p)
alpha = 0.05
nsim = 1000
t = matrix(0, p, nsim)
for (i in 1:nsim) {

Y = matrix(rnorm(p * n, beta, 1), p)
t[, i] = sqrt(n) * rowMeans(Y)/apply(Y, 1, sd)

}
pval = 2 * pt(abs(t), n - 1, lower.tail = FALSE)
bonferroni = apply(pval, 2, min)
fisher = -2 * colSums(log(pval))
pval = apply(pval, 2, sort)
simes = colSums(pval <= (1:p) * alpha/p)
mean(bonferroni < alpha/p)

[1] 0.296

mean(fisher > qchisq(1 - alpha, 2 * p))

[1] 0.53

mean(simes > 0)

[1] 0.308

139

par(mfrow = c(1, 2))
hist(t, "FD", freq = FALSE, main = "Many Weak Signals", xlab = "Student's t Statistics")
curve(dt(x, n - 1), add = TRUE, col = 2, lty = 2, lwd = 2)
qq_conf_plot(as.vector(t), qt, dparams = list(df = n - 1), points_params = list(pch = 16,

cex = 0.25))

Many Weak Signals

Student's t Statistics

D
en

si
ty

−2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

−4 −2 0 2 4
−

2
0

2
4

Expected quantiles

O
bs

er
ve

d
qu

an
til

es

hist(pval, "FD", freq = FALSE, main = "Many Weak Signals", xlab = "P-Values")
abline(h = 1, col = 2, lty = 2, lwd = 2)
qq_conf_plot(as.vector(pval), qunif, log10 = TRUE, points_params = list(pch = 16,

cex = 0.25))

Many Weak Signals

P−Values

D
en

si
ty

0.0 0.4 0.8

0.
0

1.
0

2.
0

3.
0

0 1 2 3 4

0
1

2
3

4
5

6

−log10(Expected quantiles)

−
lo

g 1
0(

O
bs

er
ve

d
qu

an
til

es
)

140

library(qqconf)
n = 1000
p = 10
beta = numeric(p)
X = matrix(rnorm(n * p), n)
X = t(t(X)/sqrt(colSums(Xˆ2)))
alpha = 0.05
nsim = 1000
t = matrix(0, p, nsim)
pval = matrix(0, p, nsim)
for (i in 1:nsim) {

Y = X %*% beta + rnorm(n)
fit = lm(Y ~ X)
t[, i] = summary(fit)$coefficients[-1, 3]
pval[, i] = summary(fit)$coefficients[-1, 4]

}
bonferroni = apply(pval, 2, min)
fisher = -2 * colSums(log(pval))
pval = apply(pval, 2, sort)
simes = colSums(pval <= (1:p) * alpha/p)
mean(bonferroni < alpha/p)

[1] 0.049

mean(fisher > qchisq(1 - alpha, 2 * p))

[1] 0.06

mean(simes > 0)

[1] 0.05

par(mfrow = c(1, 2))
hist(t, "FD", freq = FALSE, main = "No Signals", xlab = "Student's t Statistics")
curve(dt(x, n - 1), add = TRUE, col = 2, lty = 2, lwd = 2)
qq_conf_plot(as.vector(t), qt, dparams = list(df = n - p - 1), points_params = list(pch = 16,

cex = 0.25))

141

No Signals

Student's t Statistics

D
en

si
ty

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

−4 −2 0 2 4

−
4

−
2

0
2

4

Expected quantiles

O
bs

er
ve

d
qu

an
til

es
hist(pval, "FD", freq = FALSE, main = "No Signals", xlab = "P-Values")
abline(h = 1, col = 2, lty = 2, lwd = 2)
qq_conf_plot(as.vector(pval), qunif, log10 = TRUE, points_params = list(pch = 16,

cex = 0.25))

No Signals

P−Values

D
en

si
ty

0.0 0.4 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 1 2 3 4

0
1

2
3

4

−log10(Expected quantiles)

−
lo

g 1
0(

O
bs

er
ve

d
qu

an
til

es
)

library(qqconf)
n = 1000
p = 10
beta = c(2.5, numeric(p - 1))
X = matrix(rnorm(n * p), n)
X = t(t(X)/sqrt(colSums(Xˆ2)))

142

alpha = 0.05
nsim = 1000
t = matrix(0, p, nsim)
pval = matrix(0, p, nsim)
for (i in 1:nsim) {

Y = X %*% beta + rnorm(n)
fit = lm(Y ~ X)
t[, i] = summary(fit)$coefficients[-1, 3]
pval[, i] = summary(fit)$coefficients[-1, 4]

}
bonferroni = apply(pval, 2, min)
fisher = -2 * colSums(log(pval))
pval = apply(pval, 2, sort)
simes = colSums(pval <= (1:p) * alpha/p)
mean(bonferroni < alpha/p)

[1] 0.391

mean(fisher > qchisq(1 - alpha, 2 * p))

[1] 0.302

mean(simes > 0)

[1] 0.395

par(mfrow = c(1, 2))
hist(t, "FD", freq = FALSE, main = "Few Strong Signals", xlab = "Student's t Statistics")
curve(dt(x, n - 1), add = TRUE, col = 2, lty = 2, lwd = 2)
qq_conf_plot(as.vector(t), qt, dparams = list(df = n - p - 1), points_params = list(pch = 16,

cex = 0.25))

143

Few Strong Signals

Student's t Statistics

D
en

si
ty

−2 0 2 4

0.
0

0.
1

0.
2

0.
3

−4 −2 0 2 4

−
2

0
2

4

Expected quantiles

O
bs

er
ve

d
qu

an
til

es
hist(pval, "FD", freq = FALSE, main = "Few Strong Signals", xlab = "P-Values")
abline(h = 1, col = 2, lty = 2, lwd = 2)
qq_conf_plot(as.vector(pval), qunif, log10 = TRUE, points_params = list(pch = 16,

cex = 0.25))

Few Strong Signals

P−Values

D
en

si
ty

0.0 0.4 0.8

0.
0

0.
5

1.
0

1.
5

2.
0

0 1 2 3 4

0
2

4
6

−log10(Expected quantiles)

−
lo

g 1
0(

O
bs

er
ve

d
qu

an
til

es
)

library(qqconf)
n = 1000
p = 10
beta = rep(1, p)
X = matrix(rnorm(n * p), n)
X = t(t(X)/sqrt(colSums(Xˆ2)))

144

alpha = 0.05
nsim = 1000
t = matrix(0, p, nsim)
pval = matrix(0, p, nsim)
for (i in 1:nsim) {

Y = X %*% beta + rnorm(n)
fit = lm(Y ~ X)
t[, i] = summary(fit)$coefficients[-1, 3]
pval[, i] = summary(fit)$coefficients[-1, 4]

}
bonferroni = apply(pval, 2, min)
fisher = -2 * colSums(log(pval))
pval = apply(pval, 2, sort)
simes = colSums(pval <= (1:p) * alpha/p)
mean(bonferroni < alpha/p)

[1] 0.298

mean(fisher > qchisq(1 - alpha, 2 * p))

[1] 0.553

mean(simes > 0)

[1] 0.313

par(mfrow = c(1, 2))
hist(t, "FD", freq = FALSE, main = "Many Weak Signals", xlab = "Student's t Statistics")
curve(dt(x, n - 1), add = TRUE, col = 2, lty = 2, lwd = 2)
qq_conf_plot(as.vector(t), qt, dparams = list(df = n - p - 1), points_params = list(pch = 16,

cex = 0.25))

145

Many Weak Signals

Student's t Statistics

D
en

si
ty

−2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

−4 −2 0 2 4

−
2

0
2

4

Expected quantiles

O
bs

er
ve

d
qu

an
til

es
hist(pval, "FD", freq = FALSE, main = "Many Weak Signals", xlab = "P-Values")
abline(h = 1, col = 2, lty = 2, lwd = 2)
qq_conf_plot(as.vector(pval), qunif, log10 = TRUE, points_params = list(pch = 16,

cex = 0.25))

Many Weak Signals

P−Values

D
en

si
ty

0.0 0.4 0.8

0.
0

1.
0

2.
0

3.
0

0 1 2 3 4

0
1

2
3

4
5

−log10(Expected quantiles)

−
lo

g 1
0(

O
bs

er
ve

d
qu

an
til

es
)

Multiple Testing

library(xtable)
n = 100
p = 1000

146

beta = numeric(p)
alpha = 0.05
gamma = 0.5
nsim = 1000
uncorrected = matrix(0, p, nsim)
HB = matrix(0, p, nsim)
BH = matrix(0, p, nsim)
storey = matrix(0, p, nsim)
R = matrix(0, nsim, 4)
V = matrix(0, nsim, 4)
for (i in 1:nsim) {

Y = matrix(rnorm(p * n, beta, 1), p)
t = sqrt(n) * rowMeans(Y)/apply(Y, 1, sd)
pval = 2 * pt(abs(t), n - 1, lower.tail = FALSE)
uncorrected[, i] = pval < alpha
R[i, 1] = sum(uncorrected[, i])
V[i, 1] = sum(beta == 0 & uncorrected[, i])
ord = order(order(pval))
pval = sort(pval)
ind = which(pval > alpha/(p - (1:p) + 1))
R[i, 2] = ifelse(length(ind) > 0, min(ind) - 1, p)
HB[, i] = c(rep(TRUE, R[i, 2]), logical(p - R[i, 2]))[ord]
V[i, 2] = sum(beta == 0 & HB[, i])
ind = which(pval <= (1:p) * alpha/p)
R[i, 3] = ifelse(length(ind) > 0, max(ind), 0)
BH[, i] = c(rep(TRUE, R[i, 3]), logical(p - R[i, 3]))[ord]
V[i, 3] = sum(beta == 0 & BH[, i])
pi0 = (1 + sum(pval > gamma))/(p * (1 - gamma))
ind = which(pval <= pmin((1:p) * alpha/(pi0 * p), gamma))
R[i, 4] = ifelse(length(ind) > 0, max(ind), 0)
storey[, i] = c(rep(TRUE, R[i, 4]), logical(p - R[i, 4]))[ord]
V[i, 4] = sum(beta == 0 & storey[, i])

}
rates = matrix(0, 4, 3)
rownames(rates) = c("Uncorrected", "Holm-Bonferroni", "Benjamini-Hochberg",

"Storey")
colnames(rates) = c("FWER", "FDR", "pFDR")
rates[, 1] = colMeans(V > 0)
Q = ifelse(R > 0, V/R, 0)
rates[, 2] = colMeans(Q)
rates[, 3] = rates[, 2]/colMeans(R > 0)
print(xtable(rates, digits = c(0, 4, 4, 4)), comment = FALSE)

147

FWER FDR pFDR
Uncorrected 1.0000 1.0000 1.0000

Holm-Bonferroni 0.0480 0.0480 1.0000
Benjamini-Hochberg 0.0480 0.0480 1.0000

Storey 0.0480 0.0480 1.0000

print(xtable(table(rep(beta, nsim), as.vector(uncorrected))/(p * nsim), digits = c(0,
6, 6)), comment = FALSE)

0 1
0 0.949852 0.050148

print(xtable(table(rep(beta, nsim), as.vector(HB))/(p * nsim), digits = c(0,
6, 6)), comment = FALSE)

0 1
0 0.999952 0.000048

print(xtable(table(rep(beta, nsim), as.vector(BH))/(p * nsim), digits = c(0,
6, 6)), comment = FALSE)

0 1
0 0.999947 0.000053

print(xtable(table(rep(beta, nsim), as.vector(storey))/(p * nsim), digits = c(0,
6, 6)), comment = FALSE)

0 1
0 0.999947 0.000053

library(xtable)
n = 100
p = 1000
beta = c(rep(0.4, p/2), numeric(p/2))
alpha = 0.05
gamma = 0.5
nsim = 1000
uncorrected = matrix(0, p, nsim)
HB = matrix(0, p, nsim)
BH = matrix(0, p, nsim)
storey = matrix(0, p, nsim)
R = matrix(0, nsim, 4)

148

V = matrix(0, nsim, 4)
for (i in 1:nsim) {

Y = matrix(rnorm(p * n, beta, 1), p)
t = sqrt(n) * rowMeans(Y)/apply(Y, 1, sd)
pval = 2 * pt(abs(t), n - 1, lower.tail = FALSE)
uncorrected[, i] = pval < alpha
R[i, 1] = sum(uncorrected[, i])
V[i, 1] = sum(beta == 0 & uncorrected[, i])
ord = order(order(pval))
pval = sort(pval)
ind = which(pval > alpha/(p - (1:p) + 1))
R[i, 2] = ifelse(length(ind) > 0, min(ind) - 1, p)
HB[, i] = c(rep(TRUE, R[i, 2]), logical(p - R[i, 2]))[ord]
V[i, 2] = sum(beta == 0 & HB[, i])
ind = which(pval <= (1:p) * alpha/p)
R[i, 3] = ifelse(length(ind) > 0, max(ind), 0)
BH[, i] = c(rep(TRUE, R[i, 3]), logical(p - R[i, 3]))[ord]
V[i, 3] = sum(beta == 0 & BH[, i])
pi0 = (1 + sum(pval > gamma))/(p * (1 - gamma))
ind = which(pval <= pmin((1:p) * alpha/(pi0 * p), gamma))
R[i, 4] = ifelse(length(ind) > 0, max(ind), 0)
storey[, i] = c(rep(TRUE, R[i, 4]), logical(p - R[i, 4]))[ord]
V[i, 4] = sum(beta == 0 & storey[, i])

}
rates = matrix(0, 4, 3)
rownames(rates) = c("Uncorrected", "Holm-Bonferroni", "Benjamini-Hochberg",

"Storey")
colnames(rates) = c("FWER", "FDR", "pFDR")
rates[, 1] = colMeans(V > 0)
Q = ifelse(R > 0, V/R, 0)
rates[, 2] = colMeans(Q)
rates[, 3] = rates[, 2]/colMeans(R > 0)
print(xtable(rates, digits = c(0, 4, 4, 4)), comment = FALSE)

FWER FDR pFDR
Uncorrected 1.0000 0.0489 0.0489

Holm-Bonferroni 0.0290 0.0001 0.0001
Benjamini-Hochberg 1.0000 0.0252 0.0252

Storey 1.0000 0.0503 0.0503

print(xtable(table(rep(beta, nsim), as.vector(uncorrected))/(p * nsim), digits = c(0,
6, 6)), comment = FALSE)

149

0 1
0 0.474817 0.025183

0.4 0.011286 0.488714

print(xtable(table(rep(beta, nsim), as.vector(HB))/(p * nsim), digits = c(0,
6, 6)), comment = FALSE)

0 1
0 0.499971 0.000029

0.4 0.280810 0.219190

print(xtable(table(rep(beta, nsim), as.vector(BH))/(p * nsim), digits = c(0,
6, 6)), comment = FALSE)

0 1
0 0.487623 0.012377

0.4 0.022262 0.477738

print(xtable(table(rep(beta, nsim), as.vector(storey))/(p * nsim), digits = c(0,
6, 6)), comment = FALSE)

0 1
0 0.474034 0.025966

0.4 0.010989 0.489011

library(xtable)
n = 100
p = 1000
beta = rep(0.3, p)
alpha = 0.05
gamma = 0.5
nsim = 1000
uncorrected = matrix(0, p, nsim)
HB = matrix(0, p, nsim)
BH = matrix(0, p, nsim)
storey = matrix(0, p, nsim)
R = matrix(0, nsim, 4)
V = matrix(0, nsim, 4)
for (i in 1:nsim) {

Y = matrix(rnorm(p * n, beta, 1), p)
t = sqrt(n) * rowMeans(Y)/apply(Y, 1, sd)
pval = 2 * pt(abs(t), n - 1, lower.tail = FALSE)

150

uncorrected[, i] = pval < alpha
R[i, 1] = sum(uncorrected[, i])
V[i, 1] = sum(beta == 0 & uncorrected[, i])
ord = order(order(pval))
pval = sort(pval)
ind = which(pval > alpha/(p - (1:p) + 1))
R[i, 2] = ifelse(length(ind) > 0, min(ind) - 1, p)
HB[, i] = c(rep(TRUE, R[i, 2]), logical(p - R[i, 2]))[ord]
V[i, 2] = sum(beta == 0 & HB[, i])
ind = which(pval <= (1:p) * alpha/p)
R[i, 3] = ifelse(length(ind) > 0, max(ind), 0)
BH[, i] = c(rep(TRUE, R[i, 3]), logical(p - R[i, 3]))[ord]
V[i, 3] = sum(beta == 0 & BH[, i])
pi0 = (1 + sum(pval > gamma))/(p * (1 - gamma))
ind = which(pval <= pmin((1:p) * alpha/(pi0 * p), gamma))
R[i, 4] = ifelse(length(ind) > 0, max(ind), 0)
storey[, i] = c(rep(TRUE, R[i, 4]), logical(p - R[i, 4]))[ord]
V[i, 4] = sum(beta == 0 & storey[, i])

}
rates = matrix(0, 4, 3)
rownames(rates) = c("Uncorrected", "Holm-Bonferroni", "Benjamini-Hochberg",

"Storey")
colnames(rates) = c("FWER", "FDR", "pFDR")
rates[, 1] = colMeans(V > 0)
Q = ifelse(R > 0, V/R, 0)
rates[, 2] = colMeans(Q)
rates[, 3] = rates[, 2]/colMeans(R > 0)
print(xtable(rates, digits = c(0, 4, 4, 4)), comment = FALSE)

FWER FDR pFDR
Uncorrected 0.0000 0.0000 0.0000

Holm-Bonferroni 0.0000 0.0000 0.0000
Benjamini-Hochberg 0.0000 0.0000 0.0000

Storey 0.0000 0.0000 0.0000

print(xtable(table(rep(beta, nsim), as.vector(uncorrected))/(p * nsim), digits = c(0,
6, 6)), comment = FALSE)

0 1
0.3 0.155939 0.844061

151

print(xtable(table(rep(beta, nsim), as.vector(HB))/(p * nsim), digits = c(0,
6, 6)), comment = FALSE)

0 1
0.3 0.873567 0.126433

print(xtable(table(rep(beta, nsim), as.vector(BH))/(p * nsim), digits = c(0,
6, 6)), comment = FALSE)

0 1
0.3 0.177024 0.822976

print(xtable(table(rep(beta, nsim), as.vector(storey))/(p * nsim), digits = c(0,
6, 6)), comment = FALSE)

0 1
0.3 0.010090 0.989910

library(xtable)
n = 1000
p = 100
beta = numeric(p)
X = matrix(rnorm(n * p), n)
X = t(t(X)/sqrt(colSums(Xˆ2)))
alpha = 0.05
gamma = 0.5
nsim = 1000
uncorrected = matrix(0, p, nsim)
HB = matrix(0, p, nsim)
BH = matrix(0, p, nsim)
storey = matrix(0, p, nsim)
R = matrix(0, nsim, 4)
V = matrix(0, nsim, 4)
for (i in 1:nsim) {

Y = X %*% beta + rnorm(n)
fit = lm(Y ~ X)
pval = summary(fit)$coefficients[-1, 4]
uncorrected[, i] = pval < alpha
R[i, 1] = sum(uncorrected[, i])
V[i, 1] = sum(beta == 0 & uncorrected[, i])
ord = order(order(pval))
pval = sort(pval)

152

ind = which(pval > alpha/(p - (1:p) + 1))
R[i, 2] = ifelse(length(ind) > 0, min(ind) - 1, p)
HB[, i] = c(rep(TRUE, R[i, 2]), logical(p - R[i, 2]))[ord]
V[i, 2] = sum(beta == 0 & HB[, i])
ind = which(pval <= (1:p) * alpha/p)
R[i, 3] = ifelse(length(ind) > 0, max(ind), 0)
BH[, i] = c(rep(TRUE, R[i, 3]), logical(p - R[i, 3]))[ord]
V[i, 3] = sum(beta == 0 & BH[, i])
pi0 = (1 + sum(pval > gamma))/(p * (1 - gamma))
ind = which(pval <= pmin((1:p) * alpha/(pi0 * p), gamma))
R[i, 4] = ifelse(length(ind) > 0, max(ind), 0)
storey[, i] = c(rep(TRUE, R[i, 4]), logical(p - R[i, 4]))[ord]
V[i, 4] = sum(beta == 0 & storey[, i])

}
rates = matrix(0, 4, 3)
rownames(rates) = c("Uncorrected", "Holm-Bonferroni", "Benjamini-Hochberg",

"Storey")
colnames(rates) = c("FWER", "FDR", "pFDR")
rates[, 1] = colMeans(V > 0)
Q = ifelse(R > 0, V/R, 0)
rates[, 2] = colMeans(Q)
rates[, 3] = rates[, 2]/colMeans(R > 0)
print(xtable(rates, digits = c(0, 4, 4, 4)), comment = FALSE)

FWER FDR pFDR
Uncorrected 0.9910 0.9910 1.0000

Holm-Bonferroni 0.0450 0.0450 1.0000
Benjamini-Hochberg 0.0460 0.0460 1.0000

Storey 0.0470 0.0470 1.0000

print(xtable(table(rep(beta, nsim), as.vector(uncorrected))/(p * nsim), digits = c(0,
6, 6)), comment = FALSE)

0 1
0 0.950520 0.049480

print(xtable(table(rep(beta, nsim), as.vector(HB))/(p * nsim), digits = c(0,
6, 6)), comment = FALSE)

0 1
0 0.999550 0.000450

153

print(xtable(table(rep(beta, nsim), as.vector(BH))/(p * nsim), digits = c(0,
6, 6)), comment = FALSE)

0 1
0 0.999490 0.000510

print(xtable(table(rep(beta, nsim), as.vector(storey))/(p * nsim), digits = c(0,
6, 6)), comment = FALSE)

0 1
0 0.999470 0.000530

library(xtable)
n = 1000
p = 100
beta = c(rep(4, p/2), numeric(p/2))
X = matrix(rnorm(n * p), n)
X = t(t(X)/sqrt(colSums(Xˆ2)))
alpha = 0.05
gamma = 0.5
nsim = 1000
uncorrected = matrix(0, p, nsim)
HB = matrix(0, p, nsim)
BH = matrix(0, p, nsim)
storey = matrix(0, p, nsim)
R = matrix(0, nsim, 4)
V = matrix(0, nsim, 4)
for (i in 1:nsim) {

Y = X %*% beta + rnorm(n)
fit = lm(Y ~ X)
pval = summary(fit)$coefficients[-1, 4]
uncorrected[, i] = pval < alpha
R[i, 1] = sum(uncorrected[, i])
V[i, 1] = sum(beta == 0 & uncorrected[, i])
ord = order(order(pval))
pval = sort(pval)
ind = which(pval > alpha/(p - (1:p) + 1))
R[i, 2] = ifelse(length(ind) > 0, min(ind) - 1, p)
HB[, i] = c(rep(TRUE, R[i, 2]), logical(p - R[i, 2]))[ord]
V[i, 2] = sum(beta == 0 & HB[, i])
ind = which(pval <= (1:p) * alpha/p)
R[i, 3] = ifelse(length(ind) > 0, max(ind), 0)
BH[, i] = c(rep(TRUE, R[i, 3]), logical(p - R[i, 3]))[ord]

154

V[i, 3] = sum(beta == 0 & BH[, i])
pi0 = (1 + sum(pval > gamma))/(p * (1 - gamma))
ind = which(pval <= pmin((1:p) * alpha/(pi0 * p), gamma))
R[i, 4] = ifelse(length(ind) > 0, max(ind), 0)
storey[, i] = c(rep(TRUE, R[i, 4]), logical(p - R[i, 4]))[ord]
V[i, 4] = sum(beta == 0 & storey[, i])

}
rates = matrix(0, 4, 3)
rownames(rates) = c("Uncorrected", "Holm-Bonferroni", "Benjamini-Hochberg",

"Storey")
colnames(rates) = c("FWER", "FDR", "pFDR")
rates[, 1] = colMeans(V > 0)
Q = ifelse(R > 0, V/R, 0)
rates[, 2] = colMeans(Q)
rates[, 3] = rates[, 2]/colMeans(R > 0)
print(xtable(rates, digits = c(0, 4, 4, 4)), comment = FALSE)

FWER FDR pFDR
Uncorrected 0.9100 0.0482 0.0482

Holm-Bonferroni 0.0340 0.0010 0.0010
Benjamini-Hochberg 0.6740 0.0241 0.0241

Storey 0.8930 0.0494 0.0494

print(xtable(table(rep(beta, nsim), as.vector(uncorrected))/(p * nsim), digits = c(0,
6, 6)), comment = FALSE)

0 1
0 0.475080 0.024920
4 0.016760 0.483240

print(xtable(table(rep(beta, nsim), as.vector(HB))/(p * nsim), digits = c(0,
6, 6)), comment = FALSE)

0 1
0 0.499640 0.000360
4 0.171730 0.328270

print(xtable(table(rep(beta, nsim), as.vector(BH))/(p * nsim), digits = c(0,
6, 6)), comment = FALSE)

0 1
0 0.488130 0.011870
4 0.031680 0.468320

155

print(xtable(table(rep(beta, nsim), as.vector(storey))/(p * nsim), digits = c(0,
6, 6)), comment = FALSE)

0 1
0 0.474200 0.025800
4 0.017310 0.482690

library(xtable)
n = 1000
p = 100
beta = rep(3, p)
X = matrix(rnorm(n * p), n)
X = t(t(X)/sqrt(colSums(Xˆ2)))
alpha = 0.05
gamma = 0.5
nsim = 1000
uncorrected = matrix(0, p, nsim)
HB = matrix(0, p, nsim)
BH = matrix(0, p, nsim)
storey = matrix(0, p, nsim)
R = matrix(0, nsim, 4)
V = matrix(0, nsim, 4)
for (i in 1:nsim) {

Y = X %*% beta + rnorm(n)
fit = lm(Y ~ X)
pval = summary(fit)$coefficients[-1, 4]
uncorrected[, i] = pval < alpha
R[i, 1] = sum(uncorrected[, i])
V[i, 1] = sum(beta == 0 & uncorrected[, i])
ord = order(order(pval))
pval = sort(pval)
ind = which(pval > alpha/(p - (1:p) + 1))
R[i, 2] = ifelse(length(ind) > 0, min(ind) - 1, p)
HB[, i] = c(rep(TRUE, R[i, 2]), logical(p - R[i, 2]))[ord]
V[i, 2] = sum(beta == 0 & HB[, i])
ind = which(pval <= (1:p) * alpha/p)
R[i, 3] = ifelse(length(ind) > 0, max(ind), 0)
BH[, i] = c(rep(TRUE, R[i, 3]), logical(p - R[i, 3]))[ord]
V[i, 3] = sum(beta == 0 & BH[, i])
pi0 = (1 + sum(pval > gamma))/(p * (1 - gamma))
ind = which(pval <= pmin((1:p) * alpha/(pi0 * p), gamma))
R[i, 4] = ifelse(length(ind) > 0, max(ind), 0)
storey[, i] = c(rep(TRUE, R[i, 4]), logical(p - R[i, 4]))[ord]

156

V[i, 4] = sum(beta == 0 & storey[, i])
}
rates = matrix(0, 4, 3)
rownames(rates) = c("Uncorrected", "Holm-Bonferroni", "Benjamini-Hochberg",

"Storey")
colnames(rates) = c("FWER", "FDR", "pFDR")
rates[, 1] = colMeans(V > 0)
Q = ifelse(R > 0, V/R, 0)
rates[, 2] = colMeans(Q)
rates[, 3] = rates[, 2]/colMeans(R > 0)
print(xtable(rates, digits = c(0, 4, 4, 4)), comment = FALSE)

FWER FDR pFDR
Uncorrected 0.0000 0.0000 0.0000

Holm-Bonferroni 0.0000 0.0000 0.0000
Benjamini-Hochberg 0.0000 0.0000 0.0000

Storey 0.0000 0.0000 0.0000

print(xtable(table(rep(beta, nsim), as.vector(uncorrected))/(p * nsim), digits = c(0,
6, 6)), comment = FALSE)

0 1
3 0.190360 0.809640

print(xtable(table(rep(beta, nsim), as.vector(HB))/(p * nsim), digits = c(0,
6, 6)), comment = FALSE)

0 1
3 0.711010 0.288990

print(xtable(table(rep(beta, nsim), as.vector(BH))/(p * nsim), digits = c(0,
6, 6)), comment = FALSE)

0 1
3 0.219740 0.780260

print(xtable(table(rep(beta, nsim), as.vector(storey))/(p * nsim), digits = c(0,
6, 6)), comment = FALSE)

0 1
3 0.015630 0.984370

157

covid = read.csv("COVID-19_Cases_US.csv")
covid = covid[covid$Confirmed > 0,]
n = dim(covid)[1]
p0 = sum(covid$Deaths)/sum(covid$Confirmed)
print(p0)

[1] 0.05820638

alpha = 0.05
gamma = 0.5

library(xtable)
pvalless = pbinom(covid$Deaths, covid$Confirmed, p0)
unless = pvalless < alpha
print(xtable(t(table(unless))), comment = FALSE)

FALSE TRUE
1 2311 658

ord = order(order(pvalless))
pval = sort(pvalless)
ind = which(pval > alpha/(n - (1:n) + 1))
R = ifelse(length(ind) > 0, min(ind) - 1, n)
HBless = c(rep(TRUE, R), logical(n - R))[ord]
HBadj = numeric(n)
for (i in 1:n) {

HBadj[i] = min(max((n - (1:i) + 1) * pval[1:i]), 1)
}
HBadj = HBadj[ord]
print(xtable(table(HBless, HBadj < alpha)), comment = FALSE)

FALSE TRUE
FALSE 2736 0
TRUE 0 233

HBadj = p.adjust(pvalless, "holm")
print(xtable(table(HBless, HBadj < alpha)), comment = FALSE)

FALSE TRUE
FALSE 2736 0
TRUE 0 233

158

ind = which(pval <= (1:n) * alpha/n)
R = ifelse(length(ind) > 0, max(ind), 0)
BHless = c(rep(TRUE, R), logical(n - R))[ord]
BHadj = numeric(n)
for (i in n:1) {

BHadj[i] = min(min(n * pval[i:n]/(i:n)), 1)
}
BHadj = BHadj[ord]
print(xtable(table(BHless, BHadj < alpha)), comment = FALSE)

FALSE TRUE
FALSE 2523 0
TRUE 0 446

BHadj = p.adjust(pvalless, "BH")
print(xtable(table(BHless, BHadj < alpha)), comment = FALSE)

FALSE TRUE
FALSE 2523 0
TRUE 0 446

pi0 = (1 + sum(pval > gamma))/(n * (1 - gamma))
ind = which(pval <= pmin((1:n) * alpha/(pi0 * n), gamma))
R = ifelse(length(ind) > 0, max(ind), 0)
Storeyless = c(rep(TRUE, R), logical(n - R))[ord]
Storeyadj = numeric(n)
for (i in n:1) {

Storeyadj[i] = min(min(pmax(pi0 * n/(i:n), gamma) * pval[i:n]), 1)
}
Storeyadj = Storeyadj[ord]
print(xtable(table(Storeyless, Storeyadj < alpha)), comment = FALSE)

FALSE TRUE
FALSE 2515 0
TRUE 0 454

hist(pvalless, "FD", freq = FALSE, main = NA, xlab = "Uncorrected P-Values")

159

Uncorrected P−Values

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

hist(HBadj, "FD", freq = FALSE, main = NA, xlab = "Holm-Bonferroni Adjusted P-Values")

Holm−Bonferroni Adjusted P−Values

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

hist(BHadj, "FD", freq = FALSE, main = NA, xlab = "Benjamini-Hochberg Adjusted P-Values")

160

Benjamini−Hochberg Adjusted P−Values

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

hist(Storeyadj, "FD", freq = FALSE, main = NA, xlab = "Storey Adjusted P-Values")

Storey Adjusted P−Values

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

pvalgreater = 1 - pvalless + dbinom(covid$Deaths, covid$Confirmed, p0)
ungreater = pvalgreater < alpha
print(xtable(t(table(ungreater))), comment = FALSE)

FALSE TRUE
1 2724 245

ord = order(order(pvalgreater))
pval = sort(pvalgreater)
ind = which(pval > alpha/(n - (1:n) + 1))
R = ifelse(length(ind) > 0, min(ind) - 1, n)
HBgreater = c(rep(TRUE, R), logical(n - R))[ord]
HBadj = numeric(n)

161

for (i in 1:n) {
HBadj[i] = min(max((n - (1:i) + 1) * pval[1:i]), 1)

}
HBadj = HBadj[ord]
print(xtable(table(HBgreater, HBadj < alpha)), comment = FALSE)

FALSE TRUE
FALSE 2888 0
TRUE 0 81

HBadj = p.adjust(pvalgreater, "holm")
print(xtable(table(HBgreater, HBadj < alpha)), comment = FALSE)

FALSE TRUE
FALSE 2888 0
TRUE 0 81

ind = which(pval <= (1:n) * alpha/n)
R = ifelse(length(ind) > 0, max(ind), 0)
BHgreater = c(rep(TRUE, R), logical(n - R))[ord]
BHadj = numeric(n)
for (i in n:1) {

BHadj[i] = min(min(n * pval[i:n]/(i:n)), 1)
}
BHadj = BHadj[ord]
print(xtable(table(BHgreater, BHadj < alpha)), comment = FALSE)

FALSE TRUE
FALSE 2827 0
TRUE 0 142

BHadj = p.adjust(pvalgreater, "BH")
print(xtable(table(BHgreater, BHadj < alpha)), comment = FALSE)

FALSE TRUE
FALSE 2827 0
TRUE 0 142

pi0 = (1 + sum(pval > gamma))/(n * (1 - gamma))
ind = which(pval <= pmin((1:n) * alpha/(pi0 * n), gamma))
R = ifelse(length(ind) > 0, max(ind), 0)
Storeygreater = c(rep(TRUE, R), logical(n - R))[ord]

162

Storeyadj = numeric(n)
for (i in n:1) {

Storeyadj[i] = min(min(pmax(pi0 * n/(i:n), gamma) * pval[i:n]), 1)
}
Storeyadj = Storeyadj[ord]
print(xtable(table(Storeygreater, Storeyadj < alpha)), comment = FALSE)

FALSE TRUE
FALSE 2839 0
TRUE 0 130

hist(pvalgreater, "FD", freq = FALSE, main = NA, xlab = "Uncorrected P-Values")

Uncorrected P−Values

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

hist(HBadj, "FD", freq = FALSE, main = NA, xlab = "Holm-Bonferroni Adjusted P-Values")

Holm−Bonferroni Adjusted P−Values

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

163

hist(BHadj, "FD", freq = FALSE, main = NA, xlab = "Benjamini-Hochberg Adjusted P-Values")

Benjamini−Hochberg Adjusted P−Values

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

hist(Storeyadj, "FD", freq = FALSE, main = NA, xlab = "Storey Adjusted P-Values")

Storey Adjusted P−Values

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

plot(Lat ~ Long_, covid, main = "Uncorrected", xlab = "Longitude", ylab = "Latitude",
col = 1 + ungreater + 2 * unless, pch = 16, cex = 0.3)

164

−160 −140 −120 −100 −80

20
30

40
50

60
70

Uncorrected

Longitude

La
tit

ud
e

plot(Lat ~ Long_, covid, main = "Holm-Bonferroni", xlab = "Longitude", ylab = "Latitude",
col = 1 + HBgreater + 2 * HBless, pch = 16, cex = 0.3)

−160 −140 −120 −100 −80

20
30

40
50

60
70

Holm−Bonferroni

Longitude

La
tit

ud
e

plot(Lat ~ Long_, covid, main = "Benjamini-Hochberg", xlab = "Longitude", ylab = "Latitude",
col = 1 + BHgreater + 2 * BHless, pch = 16, cex = 0.3)

165

−160 −140 −120 −100 −80

20
30

40
50

60
70

Benjamini−Hochberg

Longitude

La
tit

ud
e

plot(Lat ~ Long_, covid, main = "Storey", xlab = "Longitude", ylab = "Latitude",
col = 1 + Storeygreater + 2 * Storeyless, pch = 16, cex = 0.3)

−160 −140 −120 −100 −80

20
30

40
50

60
70

Storey

Longitude

La
tit

ud
e

166

7 Selective Inference

n = 1000
p = 200
beta = c(runif(20, -10, 10), numeric(p - 20))
X = matrix(rnorm(n * p), n)
X = t(t(X)/sqrt(colSums(Xˆ2)))
Y = X %*% beta + rnorm(n)
alpha = 0.05

fit = lm(Y ~ X)
pval = summary(fit)$coefficients[-1, 4]
ord = order(order(pval))
pval = sort(pval)
ind = which(pval <= (1:p) * alpha/p)
R = ifelse(length(ind) > 0, max(ind), 0)
BH = c(rep(TRUE, R), logical(p - R))[ord]
ind = which(BH)
fit = lm(Y ~ X[, ind])
CI = confint(fit)[-1,]
mean(CI[, 1] <= beta[ind] & beta[ind] <= CI[, 2])

[1] 0.7333333

plot(beta[ind], ylim = range(CI), main = "Uncorrected Benjamini-Hochberg", xlab = "Covariate",
ylab = expression(beta), xaxt = "n", pch = 16)

arrows(1:R, CI[, 1], 1:R, CI[, 2], 0.05, 90, 3, lwd = 2)
axis(1, 1:R, ind)
abline(h = 0, col = 2, lty = 2, lwd = 2)

167

−
10

−
5

0
5

10

Uncorrected Benjamini−Hochberg

Covariate

β

1 2 3 5 6 7 8 11 13 16 19

CI = confint(fit, level = 1 - R * alpha/p)[-1,]
mean(CI[, 1] <= beta[ind] & beta[ind] <= CI[, 2])

[1] 1

plot(beta[ind], ylim = range(CI), main = "Corrected Benjamini-Hochberg", xlab = "Covariate",
ylab = expression(beta), xaxt = "n", pch = 16)

arrows(1:R, CI[, 1], 1:R, CI[, 2], 0.05, 90, 3, lwd = 2)
axis(1, 1:R, ind)
abline(h = 0, col = 2, lty = 2, lwd = 2)

−
10

−
5

0
5

10
15

Corrected Benjamini−Hochberg

Covariate

β

1 2 3 5 6 7 8 11 13 16 19

168

library(glmnet)
cvlasso = cv.glmnet(X, Y)
lambdamin = cvlasso$lambda.min
betalasso = drop(glmnet(X, Y, lambda = lambdamin)$beta)
ind = which(betalasso > 0)
R = length(ind)
fit = lm(Y ~ X[, ind])
CI = confint(fit)[-1,]
mean(CI[, 1] <= beta[ind] & beta[ind] <= CI[, 2])

[1] 0.8125

plot(beta[ind], ylim = range(CI), main = "Uncorrrected Lasso", xlab = "Covariate",
ylab = expression(beta), xaxt = "n", pch = 16)

arrows(1:R, CI[, 1], 1:R, CI[, 2], 0.05, 90, 3, lwd = 2)
axis(1, 1:R, ind)
abline(h = 0, col = 2, lty = 2, lwd = 2)

0
2

4
6

8
10

Uncorrrected Lasso

Covariate

β

1 5 7 8 9 14 18 24 170 175

CI = confint(fit, level = 1 - R * alpha/p)[-1,]
mean(CI[, 1] <= beta[ind] & beta[ind] <= CI[, 2])

[1] 1

plot(beta[ind], ylim = range(CI), main = "Corrected Lasso", xlab = "Covariate",
ylab = expression(beta), xaxt = "n", pch = 16)

arrows(1:R, CI[, 1], 1:R, CI[, 2], 0.05, 90, 3, lwd = 2)
axis(1, 1:R, ind)
abline(h = 0, col = 2, lty = 2, lwd = 2)

169

0
5

10

Corrected Lasso

Covariate

β

1 5 7 8 9 14 18 24 170 175

library(leaps)
n = 1000
p = 100
beta = numeric(p)
X = matrix(rnorm(n * p), n)
X = t(t(X)/sqrt(colSums(Xˆ2)))
train = sample(n, n/2)
nsim = 1000
covforward = numeric(nsim)
covcorrect = numeric(nsim)
tforward = matrix(0, nsim, 10)
Fforward = numeric(nsim)
covrand = numeric(nsim)
trand = matrix(0, nsim, 10)
Frand = numeric(nsim)
covtrain = numeric(nsim)
ttrain = matrix(0, nsim, 10)
Ftrain = numeric(nsim)
for (i in 1:nsim) {

Y = X %*% beta + rnorm(n)
ind = summary(regsubsets(X, Y, nvmax = 10, method = "forward"))$which[10,

-1]
fit = lm(Y ~ X[, ind])
CI = confint(fit)[-1,]
covforward[i] = mean(CI[, 1] <= beta[ind] & beta[ind] <= CI[, 2])
CI = confint(fit, level = 1 - 10 * alpha/p)[-1,]

170

covcorrect[i] = mean(CI[, 1] <= beta[ind] & beta[ind] <= CI[, 2])
tforward[i,] = summary(fit)$coefficients[-1, 3]
Fforward[i] = summary(fit)$fstatistic[1]
ind = sample(p, 10)
fit = lm(Y ~ X[, ind])
CI = confint(fit)[-1,]
covrand[i] = mean(CI[, 1] <= beta[ind] & beta[ind] <= CI[, 2])
trand[i,] = summary(fit)$coefficients[-1, 3]
Frand[i] = summary(fit)$fstatistic[1]
ind = summary(regsubsets(X[train,], Y[train], nvmax = 10, method = "forward"))$which[10,

-1]
fit = lm(Y ~ X[, ind], subset = setdiff(1:n, train))
CI = confint(fit)[-1,]
covtrain[i] = mean(CI[, 1] <= beta[ind] & beta[ind] <= CI[, 2])
ttrain[i,] = summary(fit)$coefficients[-1, 3]
Ftrain[i] = summary(fit)$fstatistic[1]

}
mean(covforward)

[1] 0.4429

mean(covcorrect)

[1] 0.9356

hist(as.vector(tforward), "FD", freq = FALSE, main = "Forward Selection", xlab = "Student's t Statistics")
curve(dt(x, n - 11), add = TRUE, col = 2, lty = 2, lwd = 2)

Forward Selection

Student's t Statistics

D
en

si
ty

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

171

hist(Fforward, "FD", freq = FALSE, main = "Forward Selection", xlim = c(0, max(Fforward)),
ylim = c(0, df(4 * (n - 11)/(5 * (n - 9)), 10, n - 11)), xlab = "Fisher's F Statistics")

curve(df(x, 10, n - 11), add = TRUE, col = 2, lty = 2, lwd = 2)

Forward Selection

Fisher's F Statistics

D
en

si
ty

0 1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

mean(covrand)

[1] 0.9535

hist(as.vector(trand), "FD", freq = FALSE, main = "Random Selection", xlab = "Student's t Statistics")
curve(dt(x, n - 11), add = TRUE, col = 2, lty = 2, lwd = 2)

Random Selection

Student's t Statistics

D
en

si
ty

−2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

172

hist(Frand, "FD", freq = FALSE, main = "Random Selection", xlab = "Fisher's F Statistics")
curve(df(x, 10, n - 11), add = TRUE, col = 2, lty = 2, lwd = 2)

Random Selection

Fisher's F Statistics

D
en

si
ty

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

mean(covtrain)

[1] 0.9526

hist(as.vector(ttrain), "FD", freq = FALSE, main = "Training Selection", xlab = "Student's t Statistics")
curve(dt(x, n - 11), add = TRUE, col = 2, lty = 2, lwd = 2)

Training Selection

Student's t Statistics

D
en

si
ty

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

hist(Ftrain, "FD", freq = FALSE, main = "Training Selection", xlab = "Fisher's F Statistics")
curve(df(x, 10, n - 11), add = TRUE, col = 2, lty = 2, lwd = 2)

173

Training Selection

Fisher's F Statistics

D
en

si
ty

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

174

8 Conformal Inference

n = 10000
X = rnorm(n)
X = X/sqrt(sum(Xˆ2))
Y = 2 * X + rnorm(n)
train = sample(n, n/4)
valid = sample(setdiff(1:n, train), n/4)
test = setdiff(1:n, c(train, valid))
alpha = 0.05

fit = lm(Y ~ X, subset = c(train, valid))
CI = predict(fit, data.frame(X = X[test]), interval = "prediction")[, 2:3]
mean(CI[, 1] <= Y[test] & Y[test] <= CI[, 2])

[1] 0.947

fit = lm(Y ~ X, subset = train)
R = abs(Y[valid] - predict(fit, data.frame(X = X[valid])))
pred = predict(fit, data.frame(X = X[test]))
Q = quantile(R, 1 - alpha)
CI = cbind(pred - Q, pred + Q)
mean(CI[, 1] <= Y[test] & Y[test] <= CI[, 2])

[1] 0.9464

R = numeric(n/2)
predplus = matrix(0, n/2, n/2)
k = 1
for (i in c(train, valid)) {

fit = lm(Y ~ X, subset = setdiff(c(train, valid), i))
R[k] = abs(Y[i] - predict(fit, data.frame(X = X[i])))
predplus[k,] = predict(fit, data.frame(X = X[test]))
k = k + 1

}
pred = predict(fit, data.frame(X = X[test]))
Q = quantile(R, 1 - alpha)
CI = cbind(pred - Q, pred + Q)
mean(CI[, 1] <= Y[test] & Y[test] <= CI[, 2])

[1] 0.9452

CI = cbind(apply(predplus - R, 2, quantile, probs = alpha), apply(predplus +

R, 2, quantile, probs = 1 - alpha))
mean(CI[, 1] <= Y[test] & Y[test] <= CI[, 2])

[1] 0.9452

175

n = 10000
X = rnorm(n)
X = X/sqrt(sum(Xˆ2))
Y = 2 * X + rcauchy(n)
train = sample(n, n/4)
valid = sample(setdiff(1:n, train), n/4)
test = setdiff(1:n, c(train, valid))
alpha = 0.05

fit = lm(Y ~ X, subset = c(train, valid))
CI = predict(fit, data.frame(X = X[test]), interval = "prediction")[, 2:3]
mean(CI[, 1] <= Y[test] & Y[test] <= CI[, 2])

[1] 0.998

fit = lm(Y ~ X, subset = train)
R = abs(Y[valid] - predict(fit, data.frame(X = X[valid])))
pred = predict(fit, data.frame(X = X[test]))
Q = quantile(R, 1 - alpha)
CI = cbind(pred - Q, pred + Q)
mean(CI[, 1] <= Y[test] & Y[test] <= CI[, 2])

[1] 0.9424

R = numeric(n/2)
predplus = matrix(0, n/2, n/2)
k = 1
for (i in c(train, valid)) {

fit = lm(Y ~ X, subset = setdiff(c(train, valid), i))
R[k] = abs(Y[i] - predict(fit, data.frame(X = X[i])))
predplus[k,] = predict(fit, data.frame(X = X[test]))
k = k + 1

}
pred = predict(fit, data.frame(X = X[test]))
Q = quantile(R, 1 - alpha)
CI = cbind(pred - Q, pred + Q)
mean(CI[, 1] <= Y[test] & Y[test] <= CI[, 2])

[1] 0.9464

CI = cbind(apply(predplus - R, 2, quantile, probs = alpha), apply(predplus +

R, 2, quantile, probs = 1 - alpha))
mean(CI[, 1] <= Y[test] & Y[test] <= CI[, 2])

[1] 0.9464

176

library(VGAM)
n = 10000
X = rnorm(n)
X = X/sqrt(sum(Xˆ2))
Y = 2 * X + rlaplace(n)
train = sample(n, n/4)
valid = sample(setdiff(1:n, train), n/4)
test = setdiff(1:n, c(train, valid))
alpha = 0.05

fit = lm(Y ~ X, subset = c(train, valid))
CI = predict(fit, data.frame(X = X[test]), interval = "prediction")[, 2:3]
mean(CI[, 1] <= Y[test] & Y[test] <= CI[, 2])

[1] 0.9388

fit = lm(Y ~ X, subset = train)
R = abs(Y[valid] - predict(fit, data.frame(X = X[valid])))
pred = predict(fit, data.frame(X = X[test]))
Q = quantile(R, 1 - alpha)
CI = cbind(pred - Q, pred + Q)
mean(CI[, 1] <= Y[test] & Y[test] <= CI[, 2])

[1] 0.9446

R = numeric(n/2)
predplus = matrix(0, n/2, n/2)
k = 1
for (i in c(train, valid)) {

fit = lm(Y ~ X, subset = setdiff(c(train, valid), i))
R[k] = abs(Y[i] - predict(fit, data.frame(X = X[i])))
predplus[k,] = predict(fit, data.frame(X = X[test]))
k = k + 1

}
pred = predict(fit, data.frame(X = X[test]))
Q = quantile(R, 1 - alpha)
CI = cbind(pred - Q, pred + Q)
mean(CI[, 1] <= Y[test] & Y[test] <= CI[, 2])

[1] 0.9492

CI = cbind(apply(predplus - R, 2, quantile, probs = alpha), apply(predplus +

R, 2, quantile, probs = 1 - alpha))
mean(CI[, 1] <= Y[test] & Y[test] <= CI[, 2])

[1] 0.9492

177

library(sn)
n = 10000
X = rnorm(n)
X = X/sqrt(sum(Xˆ2))
Y = 2 * X + rsn(n, alpha = 10)
train = sample(n, n/4)
valid = sample(setdiff(1:n, train), n/4)
test = setdiff(1:n, c(train, valid))
alpha = 0.05

fit = lm(Y ~ X, subset = c(train, valid))
CI = predict(fit, data.frame(X = X[test]), interval = "prediction")[, 2:3]
mean(CI[, 1] <= Y[test] & Y[test] <= CI[, 2])

[1] 0.949

fit = lm(Y ~ X, subset = train)
R = Y[valid] - predict(fit, data.frame(X = X[valid]))
pred = predict(fit, data.frame(X = X[test]))
Q = quantile(abs(R), 1 - alpha)
CI = cbind(pred - Q, pred + Q)
mean(CI[, 1] <= Y[test] & Y[test] <= CI[, 2])

[1] 0.9414

CI = cbind(pred + quantile(R, alpha/2), pred + quantile(R, 1 - alpha/2))
mean(CI[, 1] <= Y[test] & Y[test] <= CI[, 2])

[1] 0.9482

R = numeric(n/2)
predplus = matrix(0, n/2, n/2)
k = 1
for (i in c(train, valid)) {

fit = lm(Y ~ X, subset = setdiff(c(train, valid), i))
R[k] = Y[i] - predict(fit, data.frame(X = X[i]))
predplus[k,] = predict(fit, data.frame(X = X[test]))
k = k + 1

}
pred = predict(fit, data.frame(X = X[test]))
Q = quantile(abs(R), 1 - alpha)
CI = cbind(pred - Q, pred + Q)
mean(CI[, 1] <= Y[test] & Y[test] <= CI[, 2])

[1] 0.9416

178

CI = cbind(pred + quantile(R, alpha/2), pred + quantile(R, 1 - alpha/2))
mean(CI[, 1] <= Y[test] & Y[test] <= CI[, 2])

[1] 0.951

CI = cbind(apply(predplus - abs(R), 2, quantile, probs = alpha), apply(predplus +

abs(R), 2, quantile, probs = 1 - alpha))
mean(CI[, 1] <= Y[test] & Y[test] <= CI[, 2])

[1] 0.9416

CI = cbind(apply(predplus + R, 2, quantile, probs = alpha/2), apply(predplus +

R, 2, quantile, probs = 1 - alpha/2))
mean(CI[, 1] <= Y[test] & Y[test] <= CI[, 2])

[1] 0.951

179

9 Gaussian Processes

library(geosphere)
covid = read.csv("COVID-19_Cases_US.csv")
covid = covid[!is.na(covid$Incident_Rate) & covid$Incident_Rate > 0,]
hist(covid$Incident_Rate, "FD", freq = FALSE, main = NA, xlab = "Incident Rate")

Incident Rate

D
en

si
ty

0 2000 4000 6000 8000 10000

0.
00

0
0.

00
2

hist(log(covid$Incident_Rate), "FD", freq = FALSE, main = NA, xlab = "Log-Incident Rate")

Log−Incident Rate

D
en

si
ty

2 4 6 8

0.
00

0.
10

0.
20

0.
30

n = 500
covid = covid[sample(dim(covid)[1], n),]
X = covid[, 8:7]
Y = log(covid$Incident_Rate)
dist = distm(X)/1000

mu = mean(Y)

180

print(mu)

[1] 5.044165

sigma = sqrt(mean((Y - mu)ˆ2))
print(sigma)

[1] 1.274528

loglik0 = sum(dnorm(Y, mu, sigma, log = TRUE))
print(loglik0)

[1] -830.7573

loglik = function(param, Y, dist) {
library(mvtnorm)
n = length(Y)
mu = param[1]
sigma = exp(param[2])
lambda = exp(param[3])
tau = exp(param[4])
Sigma = lambdaˆ2 * exp(-distˆ2/(2 * tauˆ2))
dmvnorm(Y, rep(mu, n), Sigma + sigmaˆ2 * diag(n), log = TRUE)

}

opt = optim(c(mean(Y), log(sd(Y)/sqrt(2)), log(sd(Y)/sqrt(2)), 5), loglik, Y = Y,
dist = dist, control = list(fnscale = -1))

mu = opt$par[1]
print(mu)

[1] 4.794305

sigma = exp(opt$par[2])
print(sigma)

[1] 0.8089796

lambda = exp(opt$par[3])
print(lambda)

[1] 0.9323451

tau = exp(opt$par[4])
print(tau)

[1] 126.9078

loglik1 = opt$value
print(loglik1)

181

[1] -728.077

LR = -2 * (loglik0 - loglik1)
print(LR)

[1] 205.3606

Sigma = lambdaˆ2 * exp(-distˆ2/(2 * tauˆ2)) + sigmaˆ2 * diag(n)

impute = numeric(n)
kriging = numeric(n)
for (i in 1:n) {

impute[i] = mean(Y[-i])
kriging[i] = mu + crossprod(Sigma[-i, i], solve(Sigma[-i, -i], Y[-i] - mu))

}
mean((Y - impute)ˆ2)

[1] 1.630939

mean((Y - kriging)ˆ2)

[1] 0.9100077

par(pty = "s")
plot(Y, kriging, xlab = "Observed Values", ylab = "Kriging Values", pch = 16,

cex = 0.5, asp = 1)
abline(0, 1, col = 2, lty = 2, lwd = 2)

2 4 6 8

2
4

6
8

Observed Values

K
rig

in
g

V
al

ue
s

weights = abs(solve(Sigma[-n, -n], Sigma[-n, n]))
weights = weights/max(weights)
plot(X, main = "Unweighted Points", xlab = "Latitude", ylab = "Longitude", pch = 16,

cex = 0.5)

182

−160 −140 −120 −100 −80

20
30

40
50

60

Unweighted Points

Latitude

Lo
ng

itu
de

plot(X[-n,], main = "Weighted Points", xlab = "Latitude", ylab = "Longitude",
pch = 16, cex = weights)

points(X[n,], col = 2, pch = 16, cex = 0.5)

−160 −140 −120 −100 −80

20
30

40
50

60

Weighted Points

Latitude

Lo
ng

itu
de

183

10 Empirical Bayes

n = 1000
mu = 1
sigma = 2
theta = rnorm(n, mu, sigma)
S = sort(rexp(n, 1))
Y = rnorm(n, theta, S)

loglik = function(param, Y, S) {
mu = param[1]
sigma = exp(param[2])
sum(dnorm(Y, mu, sqrt(Sˆ2 + sigmaˆ2), log = TRUE))

}

opt = optim(c(0, 0), loglik, Y = Y, S = S, control = list(fnscale = -1))
muhat = opt$par[1]
print(muhat)

[1] 0.9943924

sigmahat = exp(opt$par[2])
print(sigmahat)

[1] 1.979245

thetahat = (sigmahatˆ2 * Y + Sˆ2 * muhat)/(sigmahatˆ2 + Sˆ2)
SE = sqrt(sigmahatˆ2 * Sˆ2/(sigmahatˆ2 + Sˆ2))
mean((Y - theta)ˆ2)

[1] 2.291367

mean((thetahat - theta)ˆ2)

[1] 0.8582998

par(pty = "s")
plot(theta, Y, xlab = "True Means", ylab = "Observed Values", pch = 16, cex = 0.5,

asp = 1)
abline(0, 1, col = 2, lty = 2, lwd = 2)

184

−10 −5 0 5 10 15
−

5
0

5
10

15

True Means

O
bs

er
ve

d
V

al
ue

s

plot(theta, thetahat, ylim = range(theta), xlab = "True Means", ylab = "Empirical Means",
pch = 16, cex = 0.5, asp = 1)

abline(0, 1, col = 2, lty = 2, lwd = 2)

−4 0 2 4 6 8

−
4

0
2

4
6

8

True Means

E
m

pi
ric

al
 M

ea
ns

plot(S, SE, "l", xlab = "True Standard Errors", ylab = "Empirical Standard Errors",
lwd = 2, asp = 1)

185

0 1 2 3 4 5 6 7
−

2
0

1
2

3
4

True Standard Errors

E
m

pi
ric

al
 S

ta
nd

ar
d

E
rr

or
s

musd = 0.5
etasd = 0.1
niter = 10000
musample = numeric(niter)
etasample = numeric(niter)
musample[1] = 0
etasample[1] = 0
for (i in 2:niter) {

newmu = rnorm(1, musample[i - 1], musd)
logA = loglik(c(newmu, etasample[i - 1]), Y, S) - loglik(c(musample[i -

1], etasample[i - 1]), Y, S)
musample[i] = ifelse(log(runif(1)) < logA, newmu, musample[i - 1])
neweta = rnorm(1, etasample[i - 1], etasd)
logA = loglik(c(musample[i], neweta), Y, S) - loglik(c(musample[i], etasample[i -

1]), Y, S)
etasample[i] = ifelse(log(runif(1)) < logA, neweta, etasample[i - 1])

}
nburn = 1000
musample = musample[-(1:nburn)]
mean(musample)

[1] 0.9959566

sigmasample = exp(etasample[-(1:nburn)])
mean(sigmasample)

[1] 1.982614

hist(musample, "FD", freq = FALSE, main = NA, xlab = expression(mu))
abline(v = muhat, col = 2, lty = 2, lwd = 2)

186

µ

D
en

si
ty

0.8 0.9 1.0 1.1 1.2 1.3

0
1

2
3

4
5

6
7

hist(sigmasample, "FD", freq = FALSE, main = NA, xlab = expression(sigma))
abline(v = sigmahat, col = 2, lty = 2, lwd = 2)

σ

D
en

si
ty

1.8 1.9 2.0 2.1 2.2

0
2

4
6

8

thetahat = numeric(n)
SE = numeric(n)
for (i in 1:n) {

thetahat[i] = mean((sigmasampleˆ2 * Y[i] + S[i]ˆ2 * musample)/(sigmasampleˆ2 +

S[i]ˆ2))
SE[i] = sqrt(mean((sigmasampleˆ2 * Y[i] + S[i]ˆ2 * musample)ˆ2/(sigmasampleˆ2 +

S[i]ˆ2)ˆ2 + sigmasampleˆ2 * S[i]ˆ2/(sigmasampleˆ2 + S[i]ˆ2)) - thetahat[i]ˆ2)
}
mean((thetahat - theta)ˆ2)

[1] 0.8583024

187

par(pty = "s")
plot(theta, thetahat, xlab = "True Means", ylab = "Posterior Means", pch = 16,

cex = 0.5, asp = 1)
abline(0, 1, col = 2, lty = 2, lwd = 2)

−4 0 2 4 6 8

−
4

0
2

4
6

8

True Means

P
os

te
rio

r
M

ea
ns

plot(S, SE, "l", xlab = "True Standard Errors", ylab = "Posterior Standard Errors",
lwd = 2, asp = 1)

0 1 2 3 4 5 6 7

−
2

0
1

2
3

4

True Standard Errors

P
os

te
rio

r
S

ta
nd

ar
d

E
rr

or
s

covid = read.csv("COVID-19_Cases_US.csv")
covid = covid[covid$Confirmed > 0,]
p0 = sum(covid$Deaths)/sum(covid$Confirmed)
print(p0)

[1] 0.05820638

188

alpha = 0.05

loglik = function(param, confirmed, deaths) {
n = length(confirmed)
a = exp(param[1])
b = exp(param[2])
n * (lgamma(a + b) - lgamma(a) - lgamma(b)) + sum(lgamma(deaths + a) + lgamma(confirmed -

deaths + b) - lgamma(confirmed + a + b))
}

opt = optim(c(1, 1), loglik, confirmed = covid$Confirmed, deaths = covid$Deaths,
control = list(fnscale = -1))

a = exp(opt$par[1])
print(a)

[1] 1.123923

b = exp(opt$par[2])
print(b)

[1] 25.76441

posterior = pbeta(p0, covid$Deaths + a, covid$Confirmed - covid$Deaths + b)
empless = posterior > 1 - alpha
empgreater = posterior < alpha
plot(Lat ~ Long_, covid, xlab = "Longitude", ylab = "Latitude", col = 1 + empgreater +

2 * empless, pch = 16, cex = 0.3)

−160 −140 −120 −100 −80

20
30

40
50

60
70

Longitude

La
tit

ud
e

189

	Advanced Topics in Linear Regression
	Heteroscedasticity and Autocorrelation
	Experimental Design
	Robust Regression
	Penalized Regression
	Multiple Testing
	Selective Inference
	Conformal Inference
	Gaussian Processes
	Empirical Bayes

