
Introductory Applied Statistical Methods

Vasileios (Bill) Katsianos

August 2024

Contents

1 Point Estimation 1

2 Confidence Intervals 43

3 Statistical Hypothesis Testing 62

4 Linear Regression 90

5 Analysis of Variance 91

6 Nonparametric Methods 92

1 Point Estimation

Maximum Likelihood Estimation

Direct maximization of the likelihood function isn’t always possible. In those situations, one might want to
numerically optimize the likelihood function in order to obtain the MLE of the unknown parameter. For distribution
families with just one unknown parameter, we can make use of R’s built-in optimize function in order to maximize
the log-likelihood function. In cases where the MLE of the unknown parameter is tractable, the optimize function
should always lead to a maximum value which is very close to the theoretical maximum likelihood estimate. By
plotting the curve of the log-likelihood function as a function of the unknown parameter, we can verify that its
maximization has been correctly performed and that its maximum is achieved very close to the true value of the
unknown parameter.

Example 1.1. Let X1, . . . , Xn ∼ Poisson(λ) be a random sample. Then, we know that:

ℓ(λ | x) = −nλ +
n∑

i=1
xi log λ −

n∑
i=1

log xi!, λ̂(X) = X.

loglik = function(lambda, x) {

-length(x) * lambda + sum(x) * log(lambda) - sum(lfactorial(x))

}
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n = 100

lambda = 2

X = rpois(n, lambda)

MLE = mean(X)

print(MLE)

## [1] 2.04

optimize(loglik, c(0, 1e+100), maximum = TRUE, x = X)

## $maximum

## [1] 2.040006

##

## $objective

## [1] -164.4036

curve(loglik(x, X), xlab = NA, ylab = NA, xlim = c(1, 3), lwd = 2)

abline(v = lambda, col = 2, lty = 2, lwd = 2)

abline(v = MLE, col = 4, lty = 2, lwd = 2)

legend("bottomright", c("True Parameter", "MLE"), col = c(2, 4), lty = c(2,

2), lwd = c(2, 2), cex = 0.5)
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Example 1.2. Let X1, . . . , Xn ∼ Exp(λ) and Y1, . . . , Yn ∼ Exp(1/λ) be 2 independent random samples. Then,
we know that:

ℓ(λ | x, y) = −λ

n∑
i=1

xi − 1
λ

n∑
i=1

yi, λ̂(X, Y ) =

√
Y

X
.

loglik = function(lambda, x, y) {

-lambda * sum(x) - sum(y)/lambda

}

n = 100

lambda = 2

X = rexp(n, lambda)
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Y = rexp(n, lambdaˆ(-1))

MLE = sqrt(sum(Y)/sum(X))

print(MLE)

## [1] 1.97584

optimize(loglik, c(0, 1e+100), maximum = TRUE, x = X, y = Y)

## $maximum

## [1] 1.975825

##

## $objective

## [1] -194.959

curve(loglik(x, X, Y), xlab = NA, ylab = NA, xlim = c(1, 3), lwd = 2)

abline(v = lambda, col = 2, lty = 2, lwd = 2)

abline(v = MLE, col = 4, lty = 2, lwd = 2)

legend("bottomright", c("True Parameter", "MLE"), col = c(2, 4), lty = c(2,

2), lwd = c(2, 2), cex = 0.5)
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Example 1.3. Let X1, X2, . . . , Xn be a random sample with PDF f(x; ϑ) = 1
ϑ e−(x−ϑ)/ϑ for x ⩾ ϑ and ϑ > 0.

Then, we know that:

L(ϑ | x) =

ϑ−ne−nx/ϑ+n, ϑ ⩽ x(1)

0, ϑ > x(1)

, ϑ̂(X) = X(1).

One might incorrectly infer that the MLE of ϑ is the sample average X. Nevertheless, careful inspection of the
likelihood function reveals that the likelihood at ϑ = X is actually equal to 0.

loglik = function(theta, x) {

ifelse(theta < min(x), length(x) * (1 - log(theta)) - sum(x)/theta,

-Inf)

}
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n = 100

theta = 2

X = rexp(n, thetaˆ(-1)) + theta

MLE = min(X)

print(MLE)

## [1] 2.009003

optimize(loglik, c(0, 5), maximum = TRUE, x = X)

## $maximum

## [1] 2.00897

##

## $objective

## [1] -167.7648

curve(loglik(x, X), xlab = NA, ylab = NA, xlim = c(1, 4), lwd = 2)

abline(v = theta, col = 2, lty = 2, lwd = 2)

abline(v = MLE, col = 4, lty = 2, lwd = 2)

abline(v = mean(X), col = 7, lty = 2, lwd = 2)

legend("topleft", c("True Parameter", "MLE", "Sample Mean"), col = c(2,

4, 7), lty = rep(2, 3), lwd = rep(2, 3), cex = 0.5)
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Example 1.4. Let X1, X2, . . . , Xn be a random sample with PDF f(x; ϑ) = e−(x−ϑ) for x ⩾ ϑ and ϑ < 0. We
want to estimate the parametric function g(ϑ) = Pϑ(X1 < 0) = 1 − eϑ. Suppose that we only observe the values of
the random variable W =

∑n
i=1 1[ϑ,0)(Xi) and those of the random variables X1, X2, . . . , Xn which are negative.

Then, we know that:

L(ϑ | x, w) =


(

n
w

)
e

nϑ−
∑n

i=0
xi1{xi<0} , ϑ ⩽ x(1)

0, ϑ > x(1)

, ĝ(ϑ) = 1 − emin{X(1),0}.
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loglik = function(theta, n, x, w) {

ifelse(theta < min(x), lfactorial(n) - lfactorial(w) - lfactorial(n -

w) + n * theta - sum(x), -Inf)

}

n = 1000

theta = -1

print(1 - exp(theta))

## [1] 0.6321206

X = rexp(n, 1) + theta

W = sum(X < 0)

MLE = 1 - exp(min(min(X), 0))

print(MLE)

## [1] 0.6314108

opt = optimize(loglik, c(-4, 1), maximum = TRUE, n = n, x = X, w = W)

print(1 - exp(opt$maximum))

## [1] 0.6314346

curve(loglik(x, n, X[X < 0], W), xlab = NA, ylab = NA, xlim = c(-3, 0),

lwd = 2)

abline(v = theta, col = 2, lty = 2, lwd = 2)

abline(v = log(1 - MLE), col = 4, lty = 2, lwd = 2)

legend("topright", c("True Parameter", "MLE"), col = c(2, 4), lty = c(2,

2), lwd = c(2, 2), cex = 0.5)
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Example 1.5. In the setting of the previous example, suppose that we only observe the values of the random
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variable W and those of the random variables X1, X2, . . . , Xn which are positive. Then, we know that:

ℓ(ϑ | x, w) =
(

n

w

)
[g(ϑ)]w [1 − g(ϑ)]n−w exp

{
−

n∑
i=0

xi1{xi>0}

}
, ĝ(ϑ) = 1

n
W.

We observe that the estimate of the previous example is much closer to the true value of the parametric function
than that of this example. This makes sense since the observed values of the negative observations in the sample
contain more information about the unknown parameter than just the percentage of negative observations.

loglik = function(theta, n, x, w) {

lfactorial(n) - lfactorial(w) - lfactorial(n - w) + w * log(1 - exp(theta)) +

(n - w) * theta - sum(x)

}

MLE = W/n

print(MLE)

## [1] 0.607

opt = optimize(loglik, c(-4, 1), maximum = TRUE, n = n, x = X, w = W)

print(1 - exp(opt$maximum))

## [1] 0.6069996

curve(loglik(x, n, X[X > 0], W), xlab = NA, ylab = NA, xlim = c(-3, 0),

lwd = 2)

abline(v = theta, col = 2, lty = 2, lwd = 2)

abline(v = log(1 - MLE), col = 4, lty = 2, lwd = 2)

legend("bottomleft", c("True Parameter", "MLE"), col = c(2, 4), lty = c(2,

2), lwd = c(2, 2), cex = 0.5)

−3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0

−
15

00
−

10
00

−
50

0

True Parameter
MLE

Example 1.6. Let X1, . . . , Xn ∼ N (ϑ, ϑ) be a random sample with ϑ > 0. Then, we know that:

ℓ(ϑ | x) = −n

2 log(2πϑ) − 1
2ϑ

n∑
i=1

(xi − ϑ)2, ϑ̂(X) = 1
2

√
1 + 4

n

∑n

i=1
X2

i − 1
2 .
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loglik = function(theta, x) {

-log(2 * pi * theta) * length(x)/2 - colSums(outer(x, theta, "-")ˆ2)/(2 *

theta)

}

n = 100

theta = 2

X = rnorm(n, theta, sqrt(theta))

MLE = (sqrt(1 + 4 * mean(Xˆ2)) - 1)/2

print(MLE)

## [1] 2.104385

optimize(loglik, c(0, 1e+100), maximum = TRUE, x = X)

## $maximum

## [1] 2.104386

##

## $objective

## [1] -173.444

curve(loglik(x, X), xlab = NA, ylab = NA, xlim = c(1, 3), lwd = 2)

abline(v = theta, col = 2, lty = 2, lwd = 2)

abline(v = MLE, col = 4, lty = 2, lwd = 2)

legend("bottomright", c("True Parameter", "MLE"), col = c(2, 4), lty = c(2,

2), lwd = c(2, 2), cex = 0.5)

1.0 1.5 2.0 2.5 3.0

−
24

0
−

20
0

True Parameter
MLE

For distribution families with more than one unknown parameter, we can make use of R’s built-in optim function in
order to maximize the log-likelihood function. Optimization should be performed with respect to transformations of
the parameters, so that all transformed parameters take values on the entire real line. For example, a parameter λ > 0
should be transformed to ϑ = log λ ∈ R and a parameter p ∈ (0, 1) should be transformed to ϑ = logit p = log p

1−p .
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Example 1.7. Let X1, . . . , Xn ∼ N
(
µ, σ2) be a random sample. Then, we know that:

ℓ
(
µ, σ2 | x

)
= −n

2 log
(
2πσ2)− 1

2σ2

n∑
i=1

(xi − µ)2, µ̂(X) = X, σ̂2(X) = 1
n

n∑
i=1

(Xi − X)2.

loglik = function(param, x) {

mu = param[1]

sigma = exp(param[2])

-log(2 * pi * sigmaˆ2) * length(x)/2 - sum((x - mu)ˆ2)/(2 * sigmaˆ2)

}

n = 10000

mu = 1

sigma = 2

X = rnorm(n, mu, sigma)

MLE = c(mean(X), mean((X - mean(X))ˆ2))

print(MLE)

## [1] 1.019362 3.990510

opt = optim(c(0, 0), loglik, x = X, control = list(fnscale = -1))

c(opt$par[1], exp(2 * opt$par[2]))

## [1] 1.019041 3.991276

Example 1.8. Let (X1, Y1), . . . , (Xn, Yn) be a random sample with X1 ∼ Exp(λ) and (Y1 | X1 = x) ∼ Poisson(µx)
for µ > 0 and x > 0. Then, we know that:

ℓ (λ, µ | x, y) = n log λ − (λ + µ)
n∑

i=1
xi +

n∑
i=1

yi log µ +
n∑

i=1
yi log xi −

n∑
i=1

log yi!,

λ̂(X, Y ) = 1
X

, µ̂(X, Y ) = Y

X
.

loglik = function(param, x, y) {

lambda = exp(param[1])

mu = exp(param[2])

length(x) * log(lambda) - (lambda + mu) * sum(x) + sum(y) * log(mu) +

sum(y * log(x)) - sum(lfactorial(y))

}

n = 10000

lambda = 2

mu = 3

X = rexp(n, lambda)

Y = rpois(n, mu * X)

MLE = c(mean(X)ˆ(-1), mean(Y)/mean(X))
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print(MLE)

## [1] 2.033974 3.019637

opt = optim(c(0, 0), loglik, x = X, y = Y, control = list(fnscale = -1))

exp(opt$par)

## [1] 2.034212 3.019866

Example 1.9. Let X1, X2, . . . , Xn be a random sample with PDF f(x; λ, µ) = λe−λ(x−µ) for x ⩾ µ, λ > 0 and
µ ∈ R. Then, we know that:

L(λ, µ | x) =

λne−nλx+nλµ, µ ⩽ x(1)

0, µ > x(1)

, λ̂(X) = 1
X − X(1)

, µ̂(X) = X(1).

loglik = function(param, x) {

lambda = exp(param[1])

mu = param[2]

ifelse(mu < min(x), length(x) * (log(lambda) + mu * lambda) - lambda *

sum(x), -Inf)

}

n = 10000

lambda = 2

mu = 1

X = rexp(n, lambda) + mu

MLE = c((mean(X) - min(X))ˆ(-1), min(X))

print(MLE)

## [1] 1.987717 1.000042

opt = optim(c(0, 0), loglik, x = X, control = list(fnscale = -1))

c(exp(opt$par[1]), opt$par[2])

## [1] 1.987686 1.000042

Example 1.10. Let X1, X2, . . . , Xn ∼ Laplace(µ, λ) be a random sample with PDF f(x; µ, λ) = λ
2 e−λ|x−µ| for

µ ∈ R, λ > 0 and x ∈ R. Then, we know that:

ℓ(µ, λ | x) = n log λ

2 − λ

n∑
i=1

|xi − µ|, µ̂(X) = median(X), λ̂(X) = n∑n
i=1 |Xi − median(X)|

.

loglik = function(param, x) {

mu = param[1]

lambda = exp(param[2])

length(x) * log(lambda/2) - lambda * sum(abs(x - mu))

}
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n = 10000

mu = 1

lambda = 2

X = (2 * rbinom(n, 1, 0.5) - 1) * rexp(n, lambda) + mu

MLE = c(median(X), mean(abs(X - median(X)))ˆ(-1))

print(MLE)

## [1] 1.002650 1.974653

opt = optim(c(0, 0), loglik, x = X, control = list(fnscale = -1))

c(opt$par[1], exp(opt$par[2]))

## [1] 1.002578 1.974500

Example 1.11. Let X1, X2, . . . , Xn be a random sample with the following PDF:

f(x; p, λ) =

 pλe−λx, x > 0

(1 − p)λeλx, x ⩽ 0
, x ∈ R, p ∈ (0, 1), λ > 0.

Then, we know that:

ℓ(p, λ | x) =
n∑

i=1
1(0,∞)(xi) log p +

[
n −

n∑
i=1

1(0,∞)(xi)
]

log(1 − p) + n log λ − λ

n∑
i=1

|xi|,

p̂(X) = 1
n

n∑
i=1

1(0,∞)(Xi), λ̂(X) = 1
X

.

loglik = function(param, x) {

p = (1 + exp(-param[1]))ˆ(-1)

lambda = exp(param[2])

sum(x > 0) * (log(p) - log(1 - p)) + length(x) * (log(1 - p) + log(lambda)) -

lambda * sum(abs(x))

}

n = 10000

p = 0.3

lambda = 2

X = (2 * rbinom(n, 1, p) - 1) * rexp(n, lambda)

MLE = c(mean(X > 0), mean(abs(X))ˆ(-1))

print(MLE)

## [1] 0.300500 2.009993

opt = optim(c(0, 0), loglik, x = X, control = list(fnscale = -1))

c((1 + exp(-opt$par[1]))ˆ(-1), exp(opt$par[2]))

## [1] 0.3005525 2.0099568
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Example 1.12. Let X1, . . . , Xn ∼ Exp(λ) and Y1, . . . , Yn ∼ Exp(µ) be 2 independent random variables. Suppose
that we observe the following random variables:

Zi = min{Xi, Yi}, Wi =

1, Zi = Xi

0, Zi = Yi

, i = 1, 2, . . . , n.

Then, we know that:

ℓ(λ, µ | z, w) = −(λ + µ)
n∑

i=1
zi +

n∑
i=1

wi log λ +
(

n −
n∑

i=1
wi

)
log µ,

λ̂(Z, W ) = W

Z
, µ̂(Z, W ) = 1 − W

Z
.

We observe that the MLEs based on the original sample are slightly closer to the true values of the parameters.
This makes sense since the original sample contains more information about the unknown parameters.

loglik = function(param, z, w) {

lambda = exp(param[1])

mu = exp(param[2])

-(lambda + mu) * sum(z) + sum(w) * (log(lambda) - log(mu)) + n * log(mu)

}

n = 10000

lambda = 2

mu = 3

X = rexp(n, lambda)

Y = rexp(n, mu)

Z = apply(cbind(X, Y), 1, min)

W = 2 - apply(cbind(X, Y), 1, which.min)

MLE = c(mean(X), mean(Y))ˆ(-1)

print(MLE)

## [1] 1.997255 2.995005

MLE = c(sum(W)/sum(Z), (n - sum(W))/sum(Z))

print(MLE)

## [1] 2.010357 3.011769

opt = optim(c(0, 0), loglik, z = Z, w = W, control = list(fnscale = -1))

exp(opt$par)

## [1] 2.010136 3.011512

Example 1.13. Let X1, . . . , Xn ∼ Gamma (α, λ) be a random sample. Then, we know that:

ℓ (α, λ | x) = nα log λ − n log Γ(α) + (α − 1)
n∑

i=1
log xi − λ

n∑
i=1

xi,
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but there’s no closed form solution to the maximization problem when the parameter α is unknown.

loglik = function(param, x) {

alpha = exp(param[1])

lambda = exp(param[2])

length(x) * (alpha * log(lambda) - lgamma(alpha)) + (alpha - 1) * sum(log(x)) -

lambda * sum(x)

}

n = 10000

alpha = 3

lambda = 2

X = rgamma(n, alpha, lambda)

opt = optim(c(0, 0), loglik, x = X, control = list(fnscale = -1))

exp(opt$par)

## [1] 3.052034 2.059584

Example 1.14. Let X1, . . . , Xn ∼ Beta (α, β) be a random sample. Then, we know that:

ℓ (α, β | x) = −n log B(α, β) + (α − 1)
n∑

i=1
log xi + (β − 1)

n∑
i=1

log(1 − xi),

but there’s no closed form solution to the maximization problem.

loglik = function(param, x) {

alpha = exp(param[1])

beta = exp(param[2])

-length(x) * lbeta(alpha, beta) + (alpha - 1) * sum(log(x)) + (beta -

1) * sum(log(1 - x))

}

n = 10000

alpha = 3

beta = 2

X = rbeta(n, alpha, beta)

opt = optim(c(0, 0), loglik, x = X, control = list(fnscale = -1))

exp(opt$par)

## [1] 2.992604 1.997590

Mean Squared Error

We want to empirically compare the bias, the variance and the mean squared error of different estimators of the
same parameter ϑ. In order to achieve that, we need to generate nsim independent random samples from the
distribution of interest and compute the observed value ϑ̂(k) of each candidate estimator ϑ̂ for each generated
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sample. Then, we can estimate the bias, the variance and the MSE of ϑ̂ as follows:

B̂ias
(

ϑ̂
)

= 1
nsim

nsim∑
k=1

ϑ̂(k) − ϑ,

V̂ar
(

ϑ̂
)

= 1
nsim

nsim∑
k=1

[
ϑ̂(k) − 1

nsim

nsim∑
ℓ=1

ϑ̂(ℓ)

]2

,

M̂SE
(

ϑ̂
)

= 1
nsim

nsim∑
k=1

[
ϑ̂(k) − ϑ

]2
.

Additionally, we can calculate the Cramér - Rao lower bound for an unbiased estimator of the parameter ϑ and
compare it against the empirical variance of our unbiased estimators. Finally, we can plot histograms of the
observed values for our candidate estimators, in order to get a better sense of how they are distributed around
the true value of the unknown parameter and how the distributions of different estimators of the same parameter
compare against each other.

Example 1.15. Let X1, . . . , Xn ∼ N
(
µ, σ2) be a random sample with known µ. Then, we know that the MLE

σ̂2 = 1
n

∑n
i=1(Xi − µ)2 of σ2 is also the UMVUE of σ2 and an efficient estimator of σ2 with n

σ2 σ̂2 ∼ χ2
n, whereas

the sample variance S2 = 1
n−1

∑n
i=1
(
Xi − X

)2 is another unbiased estimator of σ2 with larger variance than that
of σ̂2 and n−1

σ2 S2 ∼ χ2
n−1.

We observe that the estimated bias of both estimators is close to 0. The estimated variance of the MLE is
approximately equal to the Cramér - Rao lower bound and smaller than that of the sample variance. The
distributions of the 2 estimators almost coincide even for a sample size of n = 10 observations, but the distribution
of the sample variance displays slightly higher variation than that of the MLE.

library(xtable)

nsim = 10000

n = 10

mu = 1

sigma = 2

X = matrix(rnorm(n * nsim, mu, sigma), n)

MLE = colMeans((X - mu)ˆ2)

UE = apply(X, 2, var)

mse = matrix(0, 2, 3)

rownames(mse) = c("MLE", "Sample Variance")

colnames(mse) = c("Bias", "Variance", "MSE")

mse[1, 1] = mean(MLE) - sigmaˆ2

mse[1, 2] = mean((MLE - mean(MLE))ˆ2)

mse[1, 3] = mean((MLE - sigmaˆ2)ˆ2)

mse[2, 1] = mean(UE) - sigmaˆ2

mse[2, 2] = mean((UE - mean(UE))ˆ2)

mse[2, 3] = mean((UE - sigmaˆ2)ˆ2)

print(xtable(mse, digits = c(0, rep(4, 3))), comment = FALSE)
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Bias Variance MSE
MLE 0.0082 3.1363 3.1364

Sample Variance 0.0150 3.5000 3.5002

CRLB = 2 * sigmaˆ4/n

print(CRLB)

[1] 3.2

hist(MLE, "FD", freq = FALSE, col = rgb(1, 0, 0, 0.1), main = NA, xlab = NA)

hist(UE, "FD", freq = FALSE, col = rgb(0, 0, 1, 0.1), add = TRUE)

curve(dchisq(x * n/sigmaˆ2, n) * n/sigmaˆ2, add = TRUE, col = 2, lty = 2,

lwd = 2)

curve(dchisq(x * (n - 1)/sigmaˆ2, n - 1) * (n - 1)/sigmaˆ2, add = TRUE,

col = 4, lty = 2, lwd = 2)

abline(v = sigmaˆ2, lty = 2, lwd = 2)

legend("topright", c("MLE", "Sample Variance"), fill = c(rgb(1, 0, 0, 0.1),

rgb(0, 0, 1, 0.1)), cex = 0.5)
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Example 1.16. Let X1, . . . , Xn ∼ N
(
µ, σ2) be a random sample with unknown µ. Then, we know that the MLE

σ̂2 = 1
n

∑n
i=1(Xi − X)2 is a biased estimator of σ2 with n

σ2 σ̂2 ∼ χ2
n−1 and smaller MSE than the sample variance

S2 = 1
n−1

∑n
i=1
(
Xi − X

)2, which is the UMVUE but not an efficient estimator of σ2 with n−1
σ2 S2 ∼ χ2

n−1.

We observe that the estimated bias of the UMVUE is close to 0, whereas the MLE tends to underestimate the true
value of σ2. The estimated variance of the UMVUE is larger than both the estimated variance of the MLE and the
Cramér - Rao lower bound. The estimated MSE of the MLE is smaller than that of the sample variance. Looking
at the observed distributions of the two estimators, the MLE tends to take smaller values than the true value of σ2

on average, whereas the distribution of the sample variance displays higher variation than that of the MLE.

MLE = colMeans(t(t(X) - colMeans(X))ˆ2)

UMVUE = apply(X, 2, var)

rownames(mse) = c("MLE", "UMVUE")

mse[1, 1] = mean(MLE) - sigmaˆ2
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mse[1, 2] = mean((MLE - mean(MLE))ˆ2)

mse[1, 3] = mean((MLE - sigmaˆ2)ˆ2)

mse[2, 1] = mean(UMVUE) - sigmaˆ2

mse[2, 2] = mean((UMVUE - mean(UMVUE))ˆ2)

mse[2, 3] = mean((UMVUE - sigmaˆ2)ˆ2)

print(xtable(mse, digits = c(0, rep(4, 3))), comment = FALSE)

Bias Variance MSE
MLE -0.3865 2.8350 2.9844

UMVUE 0.0150 3.5000 3.5002

hist(MLE, "FD", freq = FALSE, col = rgb(1, 0, 0, 0.1), main = NA, xlab = NA)

hist(UMVUE, "FD", freq = FALSE, col = rgb(0, 0, 1, 0.1), add = TRUE)

curve(dchisq(x * n/sigmaˆ2, n - 1) * n/sigmaˆ2, add = TRUE, col = 2, lty = 2,

lwd = 2)

curve(dchisq(x * (n - 1)/sigmaˆ2, n - 1) * (n - 1)/sigmaˆ2, add = TRUE,

col = 4, lty = 2, lwd = 2)

abline(v = sigmaˆ2, lty = 2, lwd = 2)

legend("topright", c("MLE", "UMVUE"), fill = c(rgb(1, 0, 0, 0.1), rgb(0,

0, 1, 0.1)), cex = 0.5)
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Example 1.17. Let X1, . . . , Xn ∼ N
(
µ, σ2) be a random sample with known σ2. Then, we are aware that

eX ∼ Lognormal
(
µ, 1

n σ2) is the MLE of of g(µ) = eµ, whereas eX−σ2/2n ∼ Lognormal
(
µ − 1

2n σ2, 1
n σ2) is the

UMVUE of eµ.

We observe that the estimated bias of the UMVUE is close to 0, whereas the MLE tends to overestimate the true
value of eµ. The estimated variance of the UMVUE is larger than the Cramér - Rao lower bound but much smaller
than that of the MLE. The observed distribution of the MLE accordingly displays higher variation than that of the
UMVUE.

MLE = exp(colMeans(X))

UMVUE = exp(colMeans(X) - sigmaˆ2/(2 * n))
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mse[1, 1] = mean(MLE) - exp(mu)

mse[1, 2] = mean((MLE - mean(MLE))ˆ2)

mse[1, 3] = mean((MLE - exp(mu))ˆ2)

mse[2, 1] = mean(UMVUE) - exp(mu)

mse[2, 2] = mean((UMVUE - mean(UMVUE))ˆ2)

mse[2, 3] = mean((UMVUE - exp(mu))ˆ2)

print(xtable(mse, digits = c(0, rep(4, 3))), comment = FALSE)

Bias Variance MSE
MLE 0.6084 5.5495 5.9196

UMVUE 0.0053 3.7199 3.7200

CRLB = exp(2 * mu) * sigmaˆ2/n

print(CRLB)

[1] 2.955622

hist(UMVUE, "FD", freq = FALSE, col = rgb(0, 0, 1, 0.1), main = NA, xlab = NA)

hist(MLE, "FD", freq = FALSE, col = rgb(1, 0, 0, 0.1), add = TRUE)

curve(dlnorm(x, mu - sigmaˆ2/(2 * n), sigma/sqrt(n)), add = TRUE, col = 4,

lty = 2, lwd = 2)

curve(dlnorm(x, mu, sigma/sqrt(n)), add = TRUE, col = 2, lty = 2, lwd = 2)

abline(v = exp(mu), lty = 2, lwd = 2)

legend("topright", c("MLE", "UMVUE"), fill = c(rgb(1, 0, 0, 0.1), rgb(0,

0, 1, 0.1)), cex = 0.5)
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Example 1.18. Let X1, . . . , Xn ∼ N
(
µ, σ2) be a random sample with unknown σ2. Then, we know that X

2 is
the MLE of of g(µ) = µ2, whereas X

2 − 1
n S2 is the UMVUE of µ2.

We observe that the estimated bias of the UMVUE is close to 0, whereas the MLE tends to overestimate the true
value of µ2. The estimated variance of the UMVUE is larger than both the estimated variance of the MLE and the
Cramér - Rao lower bound, but the estimated MSE of the UMVUE is still smaller than that of the MLE.
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MLE = colMeans(X)ˆ2

UMVUE = colMeans(X)ˆ2 - apply(X, 2, var)/n

mse[1, 1] = mean(MLE) - muˆ2

mse[1, 2] = mean((MLE - mean(MLE))ˆ2)

mse[1, 3] = mean((MLE - muˆ2)ˆ2)

mse[2, 1] = mean(UMVUE) - muˆ2

mse[2, 2] = mean((UMVUE - mean(UMVUE))ˆ2)

mse[2, 3] = mean((UMVUE - muˆ2)ˆ2)

print(xtable(mse, digits = c(0, rep(4, 3))), comment = FALSE)

Bias Variance MSE
MLE 0.4004 1.9430 2.1033

UMVUE -0.0011 1.9759 1.9759

CRLB = 4 * muˆ2 * sigmaˆ2/n

print(CRLB)

[1] 1.6

hist(MLE, "FD", freq = FALSE, col = rgb(1, 0, 0, 0.1), main = NA, xlim = range(UMVUE),

xlab = NA)

hist(UMVUE, "FD", freq = FALSE, col = rgb(0, 0, 1, 0.1), add = TRUE)

abline(v = muˆ2, lty = 2, lwd = 2)

legend("topright", c("MLE", "UMVUE"), fill = c(rgb(1, 0, 0, 0.1), rgb(0,

0, 1, 0.1)), cex = 0.5)
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Example 1.19. Let X1, . . . , Xn ∼ N
(
µ, σ2) be a random sample. Then, we know that

√
n

n−1
X
S is the MLE of

g
(
µ, σ2) = µ

σ , whereas
√

2
n−1

Γ( n−1
2 )

Γ( n−2
2 )

X
S is the UMVUE of µ

σ .

We observe that the estimated bias of the UMVUE is close to 0, whereas the MLE tends to overestimate the true
value of µ

σ . The estimated variance of the UMVUE is larger than the Cramér - Rao lower bound but smaller than
that of the MLE. The observed distribution of the MLE accordingly displays higher variation than that of the
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UMVUE.

MLE = sqrt(n/(n - 1)) * colMeans(X)/apply(X, 2, sd)

UMVUE = sqrt(2/(n - 1)) * gamma((n - 1)/2)/gamma((n - 2)/2) * colMeans(X)/apply(X,

2, sd)

mse[1, 1] = mean(MLE) - mu/sigma

mse[1, 2] = mean((MLE - mean(MLE))ˆ2)

mse[1, 3] = mean((MLE - mu/sigma)ˆ2)

mse[2, 1] = mean(UMVUE) - mu/sigma

mse[2, 2] = mean((UMVUE - mean(UMVUE))ˆ2)

mse[2, 3] = mean((UMVUE - mu/sigma)ˆ2)

print(xtable(mse, digits = c(0, rep(4, 3))), comment = FALSE)

Bias Variance MSE
MLE 0.0767 0.1671 0.1729

UMVUE -0.0000 0.1256 0.1256

CRLB = (muˆ2 + 2 * sigmaˆ2)/(2 * n * sigmaˆ2)

print(CRLB)

[1] 0.1125

hist(UMVUE, "FD", freq = FALSE, col = rgb(0, 0, 1, 0.1), main = NA, xlab = NA)

hist(MLE, "FD", freq = FALSE, col = rgb(1, 0, 0, 0.1), add = TRUE)

abline(v = mu/sigma, lty = 2, lwd = 2)

legend("topright", c("MLE", "UMVUE"), fill = c(rgb(1, 0, 0, 0.1), rgb(0,

0, 1, 0.1)), cex = 0.5)
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Example 1.20. Let X1, . . . , Xn ∼ Exp(λ) be a random sample. Then, we know that λ̂ = 1
X

∼ Inv-Gamma (n, nλ)
is the MLE of λ, whereas n−1

nX
∼ Inv-Gamma (n, (n − 1)λ) is the UMVUE of λ.

We observe that the estimated bias of the UMVUE is close to 0, whereas the MLE tends to overestimate the true
value of λ. The estimated variance of the UMVUE is larger than the Cramér - Rao lower bound but smaller than
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that of the MLE. The observed distribution of the MLE accordingly displays higher variation than that of the
UMVUE.

nsim = 10000

n = 10

lambda = 2

X = matrix(rexp(n * nsim, lambda), n)

MLE = colMeans(X)ˆ(-1)

UMVUE = (n - 1)/colSums(X)

mse = matrix(0, 2, 3)

rownames(mse) = c("MLE", "UMVUE")

colnames(mse) = c("Bias", "Variance", "MSE")

mse[1, 1] = mean(MLE) - lambda

mse[1, 2] = mean((MLE - mean(MLE))ˆ2)

mse[1, 3] = mean((MLE - lambda)ˆ2)

mse[2, 1] = mean(UMVUE) - lambda

mse[2, 2] = mean((UMVUE - mean(UMVUE))ˆ2)

mse[2, 3] = mean((UMVUE - lambda)ˆ2)

print(xtable(mse, digits = c(0, rep(4, 3))), comment = FALSE)

Bias Variance MSE
MLE 0.2218 0.6081 0.6572

UMVUE -0.0004 0.4925 0.4925

CRLB = lambdaˆ2/n

print(CRLB)

[1] 0.4

hist(UMVUE, "FD", freq = FALSE, col = rgb(0, 0, 1, 0.1), main = NA, xlab = NA)

hist(MLE, "FD", freq = FALSE, col = rgb(1, 0, 0, 0.1), add = TRUE)

curve(dgamma(xˆ(-1), n, (n - 1) * lambda)/xˆ2, add = TRUE, col = 4, lty = 2,

lwd = 2)

curve(dgamma(xˆ(-1), n, n * lambda)/xˆ2, add = TRUE, col = 2, lty = 2,

lwd = 2)

abline(v = lambda, lty = 2, lwd = 2)

legend("topright", c("MLE", "UMVUE"), fill = c(rgb(1, 0, 0, 0.1), rgb(0,

0, 1, 0.1)), cex = 0.5)
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Example 1.21. Let X1, . . . , Xn ∼ Laplace(µ, λ) be a random sample with PDF f(x; µ, λ) = λ
2 e−λ|x−µ| for x ∈ R,

µ ∈ R and λ > 0. Then, we know that µ̂ = median(X) is the MLE of µ, whereas the sample mean X is an unbiased
estimator of µ.

We observe that the estimated bias of both estimators is close to 0. The estimated variance of the MLE is larger
than the Cramér - Rao lower bound but smaller than that of the sample mean. The observed distribution of the
sample mean accordingly displays much higher variation than that of the MLE.

nsim = 10000

n = 10

mu = 1

lambda = 2

X = matrix((2 * rbinom(n * nsim, 1, 0.5) - 1) * rexp(n * nsim, lambda),

n) + mu

MLE = apply(X, 2, median)

UE = colMeans(X)

mse = matrix(0, 2, 3)

rownames(mse) = c("MLE", "Unbiased Estimator")

colnames(mse) = c("Bias", "Variance", "MSE")

mse[1, 1] = mean(MLE) - mu

mse[1, 2] = mean((MLE - mean(MLE))ˆ2)

mse[1, 3] = mean((MLE - mu)ˆ2)

mse[2, 1] = mean(UE) - mu

mse[2, 2] = mean((UE - mean(UE))ˆ2)

mse[2, 3] = mean((UE - mu)ˆ2)

CRLB = (n * lambdaˆ2)ˆ(-1)

print(CRLB)

[1] 0.025
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print(xtable(mse, digits = c(0, rep(4, 3))), comment = FALSE)

Bias Variance MSE
MLE -0.0029 0.0354 0.0354

Unbiased Estimator -0.0028 0.0497 0.0497

hist(MLE, "FD", freq = FALSE, col = rgb(1, 0, 0, 0.1), main = NA, xlab = NA)

hist(UE, "FD", freq = FALSE, col = rgb(0, 0, 1, 0.1), add = TRUE)

abline(v = mu, lty = 2, lwd = 2)

legend("topright", c("MLE", "Unbiased Estimator"), fill = c(rgb(1, 0, 0,

0.1), rgb(0, 0, 1, 0.1)), cex = 0.5)
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Example 1.22. Let X1, . . . , Xn ∼ Poisson(λ) be a random sample. Then, we know that the MLE λ̂ = X of λ is
also the UMVUE of λ and an efficient estimator of λ, whereas the sample variance S2 is another unbiased estimator
of λ with larger variance than that of λ̂.

We observe that the estimated bias of both estimators is close to 0. The estimated variance of the MLE is
approximately equal to the Cramér - Rao lower bound and smaller than that of the sample variance. The observed
distribution of the sample variance accordingly displays much higher variation than that of the MLE.

nsim = 10000

n = 1000

lambda = 2

X = matrix(rpois(n * nsim, lambda), n)

MLE = colMeans(X)

UE = apply(X, 2, var)

mse = matrix(0, 2, 3)

rownames(mse) = c("MLE", "Unbiased Estimator")

colnames(mse) = c("Bias", "Variance", "MSE")

mse[1, 1] = mean(MLE) - lambda

mse[1, 2] = mean((MLE - mean(MLE))ˆ2)

mse[1, 3] = mean((MLE - lambda)ˆ2)
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mse[2, 1] = mean(UE) - lambda

mse[2, 2] = mean((UE - mean(UE))ˆ2)

mse[2, 3] = mean((UE - lambda)ˆ2)

print(xtable(mse, digits = c(0, rep(4, 3))), comment = FALSE)

Bias Variance MSE
MLE -0.0008 0.0020 0.0020

Unbiased Estimator -0.0008 0.0098 0.0098

CRLB = lambda/n

print(CRLB)

[1] 0.002

hist(MLE, "FD", freq = FALSE, col = rgb(1, 0, 0, 0.1), main = NA, xlim = range(UE),

xlab = NA)

hist(UE, "FD", freq = FALSE, col = rgb(0, 0, 1, 0.1), add = TRUE)

abline(v = lambda, lty = 2, lwd = 2)

legend("topright", c("MLE", "Unbiased Estimator"), fill = c(rgb(1, 0, 0,

0.1), rgb(0, 0, 1, 0.1)), cex = 0.5)
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Example 1.23. Let X1, . . . , Xn ∼ U(0, ϑ) be a random sample. Then, we know that the MLE ϑ̂ = X(n) of ϑ is a
biased estimator of ϑ with fX(n)(x) = n

ϑn xn−1 and n+1
n X(n) is the UMVUE of ϑ.

We observe that the estimated bias of the UMVUE is close to 0, whereas the MLE tends to underestimate the true
value of ϑ. On the other hand, the estimated variance of the UMVUE is larger than that of the MLE, but the
estimated MSE of the UMVUE is still smaller than that of the MLE. Looking at the empirical distributions of the
two estimators, we notice that the MLE always takes smaller values than the true value of ϑ.

nsim = 10000

n = 10

theta = 3

X = matrix(runif(n * nsim, 0, theta), n)
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MLE = apply(X, 2, max)

UMVUE = MLE * (n + 1)/n

mse = matrix(0, 2, 3)

rownames(mse) = c("MLE", "UMVUE")

colnames(mse) = c("Bias", "Variance", "MSE")

mse[1, 1] = mean(MLE) - theta

mse[1, 2] = mean((MLE - mean(MLE))ˆ2)

mse[1, 3] = mean((MLE - theta)ˆ2)

mse[2, 1] = mean(UMVUE) - theta

mse[2, 2] = mean((UMVUE - mean(UMVUE))ˆ2)

mse[2, 3] = mean((UMVUE - theta)ˆ2)

print(xtable(mse, digits = c(0, rep(4, 3))), comment = FALSE)

Bias Variance MSE
MLE -0.2733 0.0622 0.1369

UMVUE -0.0006 0.0753 0.0753

hist(MLE, "FD", freq = FALSE, col = rgb(1, 0, 0, 0.1), main = NA, xlim = range(c(MLE,

UMVUE)), xlab = NA)

hist(UMVUE, "FD", freq = FALSE, col = rgb(0, 0, 1, 0.1), add = TRUE)

curve(n * xˆ(n - 1)/thetaˆn, add = TRUE, col = 2, lty = 2, lwd = 2)

curve(n * xˆ(n - 1) * (n/(theta * (n + 1)))ˆn, add = TRUE, col = 4, lty = 2,

lwd = 2)

abline(v = theta, lty = 2, lwd = 2)

legend("topleft", c("MLE", "UMVUE"), fill = c(rgb(1, 0, 0, 0.1), rgb(0,

0, 1, 0.1)), cex = 0.5)
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Example 1.24. Let X1, . . . , Xn ∼ U(ϑ, 2ϑ) be a random sample. Then, we know that the MLE ϑ̂ = 1
2 X(n) of

ϑ is a biased estimator of ϑ with fX(n)(x) = n
ϑn (x − ϑ)n−1, whereas the method of moments estimator 2

3 X is an
unbiased estimator of ϑ.

For n = 5, we observe that the estimated bias of the MOME is close to 0, whereas the MLE tends to underestimate
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the true value of ϑ. On the other hand, the estimated variance of the MOME is larger than that of the MLE, but
the estimated MSE of the MOME is still smaller than that of the MLE. Looking at the empirical distributions of
the two estimators, we notice that the MLE always takes smaller values than the true value of ϑ.

nsim = 10000

n = 5

theta = 3

X = matrix(runif(n * nsim, theta, 2 * theta), n)

MLE = apply(X, 2, max)/2

MOME = 2 * colMeans(X)/3

mse = matrix(0, 2, 3)

rownames(mse) = c("MLE", "MOME")

colnames(mse) = c("Bias", "Variance", "MSE")

mse[1, 1] = mean(MLE) - theta

mse[1, 2] = mean((MLE - mean(MLE))ˆ2)

mse[1, 3] = mean((MLE - theta)ˆ2)

mse[2, 1] = mean(MOME) - theta

mse[2, 2] = mean((MOME - mean(MOME))ˆ2)

mse[2, 3] = mean((MOME - theta)ˆ2)

print(xtable(mse, digits = c(0, rep(4, 3))), comment = FALSE)

Bias Variance MSE
MLE -0.2488 0.0441 0.1060

MOME 0.0037 0.0661 0.0661

hist(MLE, "FD", freq = FALSE, col = rgb(1, 0, 0, 0.1), main = NA, xlim = range(c(MLE,

MOME)), xlab = NA)

hist(MOME, "FD", freq = FALSE, col = rgb(0, 0, 1, 0.1), add = TRUE)

curve(2 * n * (2 * x - theta)ˆ(n - 1)/thetaˆn, add = TRUE, col = 2, lty = 2,

lwd = 2)

abline(v = theta, lty = 2, lwd = 2)

legend("topright", c("MLE", "MOME"), fill = c(rgb(1, 0, 0, 0.1), rgb(0,

0, 1, 0.1)), cex = 0.5)
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For n = 15, we observe that the estimated MSE of the MOME becomes larger than that of the MLE.

n = 15

X = matrix(runif(n * nsim, theta, 2 * theta), n)

MLE = apply(X, 2, max)/2

MOME = 2 * colMeans(X)/3

mse[1, 1] = mean(MLE) - theta

mse[1, 2] = mean((MLE - mean(MLE))ˆ2)

mse[1, 3] = mean((MLE - theta)ˆ2)

mse[2, 1] = mean(MOME) - theta

mse[2, 2] = mean((MOME - mean(MOME))ˆ2)

mse[2, 3] = mean((MOME - theta)ˆ2)

print(xtable(mse, digits = c(0, rep(4, 3))), comment = FALSE)

Bias Variance MSE
MLE -0.0933 0.0078 0.0165

MOME -0.0010 0.0228 0.0228

hist(MLE, "FD", freq = FALSE, col = rgb(1, 0, 0, 0.1), main = NA, xlim = range(c(MLE,

MOME)), xlab = NA)

hist(MOME, "FD", freq = FALSE, col = rgb(0, 0, 1, 0.1), add = TRUE)

curve(2 * n * (2 * x - theta)ˆ(n - 1)/thetaˆn, add = TRUE, col = 2, lty = 2,

lwd = 2)

abline(v = theta, lty = 2, lwd = 2)

legend("topright", c("MLE", "MOME"), fill = c(rgb(1, 0, 0, 0.1), rgb(0,

0, 1, 0.1)), cex = 0.5)
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Asymptotic Distribution of Estimators

We want to examine the behavior of the bias, the variance and the MSE of an estimator as the sample size increases.
In this setting, we also want to inspect how the finite sample distribution and the asymptotic distribution of the
estimator compare against the empirical distribution of the estimator for small vs. large sample sizes.

Example 1.25. Let X1, . . . , Xn ∼ N (ϑ, ϑ) be a random sample with ϑ > 0. Then, we know that:

ϑ̂n = 1
2

√
1 + 4

n

∑n

i=1
X2

i − 1
2 ,

√
n
(

ϑ̂n − ϑ
)

d→ N
(

0,
2ϑ2

2ϑ + 1

)
.

We start off with a sample size of just n = 5 observations from this distribution and continue generating another
step = 5 observations for our sample until we reach a total number of n = 250 observations. We observe that the
MLE slightly underestimates the true value of ϑ for small sample sizes, but its bias converges to 0 as the sample
size increases. Similarly, the MLE displays high variance and MSE for small sample sizes, but those quantities also
converge to 0 as the sample size increases. The MLE appears to achieve the Cramér - Rao lower bound even for a
small sample size of just n = 5 observations. The asymptotic distribution of the MLE almost coincides with its
corresponding empirical distribution even for a sample size of just n = 5 observations, while it’s an actual perfect
fit for a large sample size of n = 250 observations.

nsim = 10000

step = 5

n = seq(5, 250, step)

theta = 2

X = matrix(0, 0, nsim)

MLE = matrix(0, 50, nsim)

Bias = numeric(50)

Variance = numeric(50)

MSE = numeric(50)

for (k in 1:50) {

X = rbind(X, matrix(rnorm(step * nsim, theta, sqrt(theta)), step))

MLE[k, ] = (sqrt(1 + 4 * colMeans(Xˆ2)) - 1)/2
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Bias[k] = mean(MLE[k, ]) - theta

Variance[k] = var(MLE[k, ])

MSE[k] = mean((MLE[k, ] - theta)ˆ2)

}

CRLB = 2 * thetaˆ2/(2 * theta + 1)/n

plot(n, MSE, "l", ylim = range(c(MSE, Bias)), xlab = "Sample Size", ylab = NA,

lty = 2, lwd = 2)

lines(n, Variance, col = 2, lty = 2, lwd = 2)

lines(n, Bias, col = 4, lty = 2, lwd = 2)

lines(n, CRLB, col = 7, lty = 2, lwd = 2)

abline(h = 0, lty = 2)

legend("topright", c("MSE", "Variance", "Bias", "CRLB"), col = c(1, 2,

4, 7), lty = rep(2, 4), lwd = rep(2, 4), cex = 0.5)
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hist(MLE[1, ], "FD", freq = FALSE, main = "Small Sample Size", xlab = NA)

curve(dnorm(x, theta, sqrt(2 * thetaˆ2/(n[1] * (2 * theta + 1)))), add = TRUE,

col = 4, lty = 2, lwd = 2)

27



Small Sample Size

D
en

si
ty

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

hist(MLE[50, ], "FD", freq = FALSE, main = "Large Sample Size", xlab = NA)

curve(dnorm(x, theta, sqrt(2 * thetaˆ2/(n[50] * (2 * theta + 1)))), add = TRUE,

col = 4, lty = 2, lwd = 2)
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Example 1.26. Let X1, . . . , Xn ∼ U(0, ϑ) be a random sample. Then, we know that:

ϑ̂n = X(n), fX(n) = n

ϑn
xn−1, n

[
ϑ − X(n)

] d→ Exp (1/ϑ) .

The MLE severely underestimates the true value of ϑ for small sample sizes, but its bias converges to 0 as the
sample size increases. Similarly, the MLE displays high variance and MSE for small sample sizes, but those
quantities also converge to 0 as the sample size increases. The asymptotic distribution of the MLE almost coincides
with its corresponding finite sample distribution even for a sample size of just n = 5 observations, while it’s an
actual perfect fit for a large sample size of n = 250 observations.
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nsim = 10000

step = 5

n = seq(5, 250, step)

theta = 2

X = matrix(0, 0, nsim)

for (k in 1:50) {

X = rbind(X, matrix(runif(step * nsim, max = theta), step))

MLE[k, ] = apply(X, 2, max)

Bias[k] = mean(MLE[k, ]) - theta

Variance[k] = var(MLE[k, ])

MSE[k] = mean((MLE[k, ] - theta)ˆ2)

}

plot(n, MSE, "l", ylim = range(c(MSE, Bias)), xlab = "Sample Size", ylab = NA,

lty = 2, lwd = 2)

lines(n, Variance, col = 2, lty = 2, lwd = 2)

lines(n, Bias, col = 4, lty = 2, lwd = 2)

abline(h = 0, lty = 2)

legend("bottomright", c("MSE", "Variance", "Bias"), col = c(1, 2, 4), lty = rep(2,

3), lwd = rep(2, 3), cex = 0.5)
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hist(MLE[1, ], "FD", freq = FALSE, main = "Small Sample Size", xlab = NA)

curve(n[1] * xˆ(n[1] - 1)/thetaˆn[1], add = TRUE, col = 2, lty = 2, lwd = 2)

curve(dexp(theta - x, n[1]/theta), add = TRUE, xlim = c(min(MLE[1, ]),

theta), col = 4, lty = 2, lwd = 2)

legend("topleft", c("Finite Sample Distribution", "Asymptotic Distribution"),

col = c(2, 4), lty = c(2, 2), lwd = c(2, 2), cex = 0.5)
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hist(MLE[50, ], "FD", freq = FALSE, main = "Large Sample Size", xlab = NA)

curve(n[50] * xˆ(n[50] - 1)/thetaˆn[50], add = TRUE, col = 2, lty = 2,

lwd = 2)

curve(dexp(theta - x, n[50]/theta), add = TRUE, xlim = c(min(MLE[50, ]),

theta), col = 4, lty = 2, lwd = 2)

legend("topleft", c("Finite Sample Distribution", "Asymptotic Distribution"),

col = c(2, 4), lty = c(2, 2), lwd = c(2, 2), cex = 0.5)
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Example 1.27. Let X1, . . . , Xn ∼ Pareto(ϑ, λ) be a random sample with f(x; ϑ) = λϑλ

xλ+1 for ϑ > 0, known λ > 2
and x ⩾ ϑ. Then, we know that:

ϑ̂n = X(1), fX(1) = nλϑnλ

xnλ+1 , n
[
X(1) − ϑ

] d→ Exp (λ/ϑ) .

The MLE overestimates the true value of ϑ for small sample sizes, but that bias converges to 0 as the sample
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size increases. The asymptotic distribution of the MLE is an actual perfect fit for its corresponding finite sample
distribution even for a sample size of just n = 5 observations.

nsim = 10000

step = 5

n = seq(5, 250, step)

theta = 2

lambda = 3

X = matrix(0, 0, nsim)

for (k in 1:50) {

X = rbind(X, theta * matrix((1 - runif(step * nsim))ˆ(-lambdaˆ(-1)),

step))

MLE[k, ] = apply(X, 2, min)

Bias[k] = mean(MLE[k, ]) - theta

Variance[k] = var(MLE[k, ])

MSE[k] = mean((MLE[k, ] - theta)ˆ2)

}

plot(n, MSE, "l", ylim = range(c(MSE, Bias)), xlab = "Sample Size", ylab = NA,

lty = 2, lwd = 2)

lines(n, Variance, col = 2, lty = 2, lwd = 2)

lines(n, Bias, col = 4, lty = 2, lwd = 2)

legend("topright", c("MSE", "Variance", "Bias"), col = c(1, 2, 4), lty = rep(2,

3), lwd = rep(2, 3), cex = 0.5)
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hist(MLE[1, ], "FD", freq = FALSE, main = "Small Sample Size", xlab = NA)

curve(n[1] * lambda * thetaˆ(n[1] * lambda)/xˆ(n[1] * lambda + 1), add = TRUE,

col = 2, lty = 2, lwd = 2)

curve(dexp(x - theta, n[1] * lambda/theta), add = TRUE, col = 4, lty = 2,

lwd = 2)
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legend("topright", c("Finite Sample Distribution", "Asymptotic Distribution"),

col = c(2, 4), lty = c(2, 2), lwd = c(2, 2), cex = 0.5)
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hist(MLE[50, ], "FD", freq = FALSE, main = "Large Sample Size", xlab = NA)

curve(n[50] * lambda * thetaˆ(n[50] * lambda)/xˆ(n[50] * lambda + 1), add = TRUE,

col = 2, lty = 2, lwd = 2)

curve(dexp(x - theta, n[50] * lambda/theta), add = TRUE, col = 4, lty = 2,

lwd = 2)

legend("topright", c("Finite Sample Distribution", "Asymptotic Distribution"),

col = c(2, 4), lty = c(2, 2), lwd = c(2, 2), cex = 0.5)

Large Sample Size

D
en

si
ty

2.000 2.005 2.010 2.015 2.020 2.025

0
50

15
0

25
0

35
0

Finite Sample Distribution
Asymptotic Distribution

Example 1.28. Let X1, . . . , Xn ∼ Exp(λ) be a random sample. Then, we know that:

λ̂n = 1
Xn

∼ Inv-Gamma(n, nλ),
√

n

(
1

Xn

− λ

)
d→ N

(
0, λ2) .
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The MLE slightly overestimates the true value of ϑ for small sample sizes, but its bias converges to 0 as the
sample size increases. Similarly, the MLE displays very high variance and MSE for small sample sizes, but those
quantities also converge to 0 as the sample size increases. The variance of the MLE quickly approaches the Cramér
- Rao lower bound as the sample size increases. The asymptotic distribution of the MLE is quite far off from its
corresponding finite sample distribution for a small sample size of just n = 5 observations, but the 2 distributions
almost perfectly coincide for a large sample size of n = 250 observations.

nsim = 10000

step = 5

n = seq(5, 250, step)

lambda = 3

X = matrix(0, 0, nsim)

for (k in 1:50) {

X = rbind(X, matrix(rexp(step * nsim, lambda), step))

MLE[k, ] = colMeans(X)ˆ(-1)

Bias[k] = mean(MLE[k, ]) - lambda

Variance[k] = var(MLE[k, ])

MSE[k] = mean((MLE[k, ] - lambda)ˆ2)

}

CRLB = lambdaˆ2/n

plot(n, MSE, "l", xlab = "Sample Size", ylab = NA, lty = 2, lwd = 2)

lines(n, Variance, col = 2, lty = 2, lwd = 2)

lines(n, Bias, col = 4, lty = 2, lwd = 2)

lines(n, CRLB, col = 7, lty = 2, lwd = 2)

legend("topright", c("MSE", "Variance", "Bias", "CRLB"), col = c(1, 2,

4, 7), lty = rep(2, 4), lwd = rep(2, 4), cex = 0.5)
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hist(MLE[1, ], "FD", freq = FALSE, main = "Small Sample Size", xlab = NA)

curve(dgamma(xˆ(-1), n[1], n[1] * lambda)/xˆ2, add = TRUE, col = 2, lty = 2,

lwd = 2)
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curve(dnorm(x, lambda, lambda/sqrt(n[1])), add = TRUE, col = 4, lty = 2,

lwd = 2)

legend("topright", c("Finite Sample Distribution", "Asymptotic Distribution"),

col = c(2, 4), lty = c(2, 2), lwd = c(2, 2), cex = 0.5)
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hist(MLE[50, ], "FD", freq = FALSE, main = "Large Sample Size", xlab = NA)

curve(dgamma(xˆ(-1), n[50], n[50] * lambda)/xˆ2, add = TRUE, col = 2, lty = 2,

lwd = 2)

curve(dnorm(x, lambda, lambda/sqrt(n[50])), add = TRUE, col = 4, lty = 2,

lwd = 2)

legend("topright", c("Finite Sample Distribution", "Asymptotic Distribution"),

col = c(2, 4), lty = c(2, 2), lwd = c(2, 2), cex = 0.5)
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Example 1.29. Let X1, . . . , Xn ∼ Exp(λ) and Y1, . . . , Yn ∼ Exp(1/λ) be 2 independent random samples. Then,
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we know that:

λ̂n =

√
Y n

Xn

,
1
λ2 λ̂2

n ∼ F (2n, 2n),
√

n
(

λ̂n − λ
)

d→ N
(

0,
1
2λ2

)
.

The MLE slightly overestimates the true value of ϑ for small sample sizes, but its bias converges to 0 as the sample
size increases. Similarly, the MLE displays high variance and MSE for small sample sizes, but those quantities also
converge to 0 as the sample size increases. The variance of the MLE quickly approaches the Cramér - Rao lower
bound as the sample size increases. The asymptotic distribution of the MLE is quite far off from its corresponding
finite sample distribution for a small sample size of just n = 5 observations, but the 2 distributions almost perfectly
coincide for a large sample size of n = 250 observations.

nsim = 10000

step = 5

n = seq(5, 250, step)

lambda = 3

X = matrix(0, 0, nsim)

Y = matrix(0, 0, nsim)

for (k in 1:50) {

X = rbind(X, matrix(rexp(step * nsim, lambda), step))

Y = rbind(Y, matrix(rexp(step * nsim, lambdaˆ(-1)), step))

MLE[k, ] = sqrt(colSums(Y)/colSums(X))

Bias[k] = mean(MLE[k, ]) - lambda

Variance[k] = var(MLE[k, ])

MSE[k] = mean((MLE[k, ] - lambda)ˆ2)

}

CRLB = lambdaˆ2/(2 * n)

plot(n, MSE, "l", xlab = "Sample Size", ylab = NA, lty = 2, lwd = 2)

lines(n, Variance, col = 2, lty = 2, lwd = 2)

lines(n, Bias, col = 4, lty = 2, lwd = 2)

lines(n, CRLB, col = 7, lty = 2, lwd = 2)

legend("topright", c("MSE", "Variance", "Bias", "CRLB"), col = c(1, 2,

4, 7), lty = rep(2, 4), lwd = rep(2, 4), cex = 0.5)
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hist(MLE[1, ], "FD", freq = FALSE, main = "Small Sample Size", xlab = NA)

curve(2 * x * df(xˆ2/lambdaˆ2, 2 * n[1], 2 * n[1])/lambdaˆ2, add = TRUE,

col = 2, lty = 2, lwd = 2)

curve(dnorm(x, lambda, lambda/sqrt(2 * n[1])), add = TRUE, col = 4, lty = 2,

lwd = 2)

legend("topright", c("Finite Sample Distribution", "Asymptotic Distribution"),

col = c(2, 4), lty = c(2, 2), lwd = c(2, 2), cex = 0.5)
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hist(MLE[50, ], "FD", freq = FALSE, main = "Large Sample Size", xlab = NA)

curve(2 * x * df(xˆ2/lambdaˆ2, 2 * n[50], 2 * n[50])/lambdaˆ2, add = TRUE,

col = 2, lty = 2, lwd = 2)

curve(dnorm(x, lambda, lambda/sqrt(2 * n[50])), add = TRUE, col = 4, lty = 2,

lwd = 2)

legend("topright", c("Finite Sample Distribution", "Asymptotic Distribution"),
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col = c(2, 4), lty = c(2, 2), lwd = c(2, 2), cex = 0.5)
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Example 1.30. Let X1, . . . , Xn ∼ Laplace(µ, λ) be a random sample with f(x; µ) = λ
2 e−λ|x−µ| for µ ∈ R, known

λ > 0 and x ∈ R. Then, we know that:

µ̂n = median(X),
√

n [median(X) − µ] d→ N
(

0,
1
λ2

)
.

Since the MLE µ̂n is an unbiased estimator of µ, its estimated bias is always close to 0, even for a sample size
of just n = 5 observations. The variance of the MLE quickly approaches the Cramér - Rao lower bound as the
sample size increases. The asymptotic distribution of the MLE is quite far off from its corresponding empirical
distribution for a small sample size of just n = 5 observations, but the 2 distributions almost perfectly coincide for
a large sample size of n = 250 observations.

nsim = 10000

step = 5

n = seq(5, 250, step)

mu = 1

lambda = 3

X = matrix(0, 0, nsim)

for (k in 1:50) {

X = rbind(X, matrix((2 * rbinom(step * nsim, 1, 0.5) - 1) * rexp(step *

nsim, lambda), step) + mu)

MLE[k, ] = apply(X, 2, median)

Bias[k] = mean(MLE[k, ]) - mu

Variance[k] = var(MLE[k, ])

MSE[k] = mean((MLE[k, ] - mu)ˆ2)

}

CRLB = (n * lambdaˆ2)ˆ(-1)

plot(n, MSE, "l", ylim = range(c(MSE, Bias)), xlab = "Sample Size", ylab = NA,
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lty = 2, lwd = 2)

lines(n, Variance, col = 2, lty = 2, lwd = 2)

lines(n, Bias, col = 4, lty = 2, lwd = 2)

lines(n, CRLB, col = 7, lty = 2, lwd = 2)

legend("topright", c("MSE", "Variance", "Bias", "CRLB"), col = c(1, 2,

4, 7), lty = rep(2, 4), lwd = rep(2, 4), cex = 0.5)
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hist(MLE[1, ], "FD", freq = FALSE, main = "Small Sample Size", xlab = NA)

curve(dnorm(x, mu, (sqrt(n[1]) * lambda)ˆ(-1)), add = TRUE, col = 4, lty = 2,

lwd = 2)

Small Sample Size

D
en

si
ty

−0.5 0.0 0.5 1.0 1.5 2.0

0.
0

1.
0

2.
0

hist(MLE[50, ], "FD", freq = FALSE, main = "Large Sample Size", xlab = NA)

curve(dnorm(x, mu, (sqrt(n[50]) * lambda)ˆ(-1)), add = TRUE, col = 4, lty = 2,

lwd = 2)
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Example 1.31. Let X1, . . . , Xn ∼ Bernoulli(p) be a random sample and g(p) = min{p, 1 − p}. For p ̸= 1
2 , we

know that:
ĝn(p) = min

{
Xn, 1 − Xn

}
,

√
n
[
ĝn(p) − g(p)

]
d→ N (0, p(1 − p)) .

Since the sampling distribution is discrete, the asymptotic distribution of the MLE is very far off from its
corresponding empirical distribution for a small sample size of just n = 10 observations, but the 2 distributions
closely match each other for a large sample size of n = 500 observations.

nsim = 10000

step = 10

n = seq(10, 500, step)

p = 0.1

X = matrix(0, 0, nsim)

for (k in 1:50) {

X = rbind(X, matrix(rbinom(step * nsim, 1, p), step))

MLE[k, ] = pmin(colMeans(X), 1 - colMeans(X))

Bias[k] = mean(MLE[k, ]) - min(p, 1 - p)

Variance[k] = var(MLE[k, ])

MSE[k] = mean((MLE[k, ] - min(p, 1 - p))ˆ2)

}

plot(n, MSE, "l", ylim = range(c(MSE, Bias)), xlab = "Sample Size", ylab = NA,

lty = 2, lwd = 2)

lines(n, Variance, col = 2, lty = 2, lwd = 2)

lines(n, Bias, col = 4, lty = 2, lwd = 2)

legend("topright", c("MSE", "Variance", "Bias"), col = c(1, 2, 4), lty = rep(2,

3), lwd = rep(2, 3), cex = 0.5)
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hist(MLE[1, ], "FD", freq = FALSE, main = "Small Sample Size", xlab = NA)

curve(dnorm(x, min(p, 1 - p), sqrt(p * (1 - p)/n[1])), add = TRUE, col = 4,

lty = 2, lwd = 2)
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hist(MLE[50, ], "FD", freq = FALSE, main = "Large Sample Size", xlab = NA)

curve(dnorm(x, min(p, 1 - p), sqrt(p * (1 - p)/n[50])), add = TRUE, col = 4,

lty = 2, lwd = 2)
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For p = 1
2 , we know that:

√
n

[
ĝn(p) − 1

2

]
d→ −|Y |, Y ∼ N

(
0,

1
4

)
.

Since the MLE always underestimates the true value of p, its bias starts off significantly below 0 and very slowly
converges towards 0.

p = 0.5

X = matrix(0, 0, nsim)

for (k in 1:50) {

X = rbind(X, matrix(rbinom(step * nsim, 1, p), step))

MLE[k, ] = pmin(colMeans(X), 1 - colMeans(X))

Bias[k] = mean(MLE[k, ]) - min(p, 1 - p)

Variance[k] = var(MLE[k, ])

MSE[k] = mean((MLE[k, ] - min(p, 1 - p))ˆ2)

}

plot(n, MSE, "l", ylim = range(c(MSE, Bias)), xlab = "Sample Size", ylab = NA,

lty = 2, lwd = 2)

lines(n, Variance, col = 2, lty = 2, lwd = 2)

lines(n, Bias, col = 4, lty = 2, lwd = 2)

abline(h = 0, lty = 2)

legend("bottomright", c("MSE", "Variance", "Bias"), col = c(1, 2, 4), lty = rep(2,

3), lwd = rep(2, 3), cex = 0.5)
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hist(MLE[1, ], "FD", freq = FALSE, main = "Small Sample Size", xlab = NA)

curve(dnorm(x - p, 0, sqrt(p * (1 - p)/n[1])) + dnorm(p - x, 0, sqrt(p *

(1 - p)/n[1])), add = TRUE, col = 4, lty = 2, lwd = 2)
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hist(MLE[50, ], "FD", freq = FALSE, main = "Large Sample Size", xlab = NA)

curve(dnorm(x - p, 0, sqrt(p * (1 - p)/n[50])) + dnorm(p - x, 0, sqrt(p *

(1 - p)/n[50])), add = TRUE, col = 4, lty = 2, lwd = 2)
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2 Confidence Intervals

We want to verify that the confidence intervals we’re constructing have close to nominal coverage rate and to
empirically compare the average length of different types of confidence intervals for the same parameter. In order to
achieve that, we need to generate nsim independent random samples following the distribution of interest and the
realization of each candidate confidence interval for each generated sample. Then, we can calculate the empirical
coverage rate of the confidence interval as the percentage of the observed confidence intervals which contain the
true value of the unknown parameter.

Example 2.1. Let X1, . . . , Xn ∼ N
(
µ, σ2) be a random sample. Then, we know that:

Iµ; 1−α

(
X; σ2) =

[
X − Zα/2

σ√
n

, X + Zα/2
σ√
n

]
.

If we generate nsim = 50 samples of size n = 1000 from this distribution and calculate the corresponding 95%
confidence intervals for µ, assuming that σ2 is known, we observe that 2 out of the 50 observed confidence intervals
don’t cover the true value of µ. This leads to an empirical coverage rate of 96%, which is very close to the nominal
coverage rate of 95%.

nsim = 50

n = 1000

mu = 1

sigma = 2

alpha = 0.05

X = matrix(rnorm(n * nsim, mu, sigma), n)

MLE = colMeans(X)

CI = cbind(MLE - qnorm(1 - alpha/2) * sigma/sqrt(n), MLE + qnorm(1 - alpha/2) *

sigma/sqrt(n))

mean(CI[, 1] < mu & mu < CI[, 2])

## [1] 0.96

plot(1:nsim, type = "n", ylim = range(CI), ylab = NA)

arrows(1:nsim, CI[, 1], 1:nsim, CI[, 2], 0.025, 90, 3, col = ifelse(CI[,

1] < mu & mu < CI[, 2], 1, 2))

abline(h = mu, col = 4, lty = 2, lwd = 2)
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If we generate nsim = 100000 samples of size n = 100 from this distribution and calculate the corresponding 95%
confidence intervals for µ, we observe that the empirical coverage rate is again really close to nominal and the
average length of the confidence interval is approximately equal to 0.78.

nsim = 1e+05

n = 100

X = matrix(rnorm(n * nsim, mu, sigma), n)

MLE = colMeans(X)

CI = cbind(MLE - qnorm(1 - alpha/2) * sigma/sqrt(n), MLE + qnorm(1 - alpha/2) *

sigma/sqrt(n))

mean(CI[, 1] < mu & mu < CI[, 2])

## [1] 0.94977

mean(CI[, 2] - CI[, 1])

## [1] 0.7839856

If σ2 is instead unknown, then we know that:

Iµ; 1−α (X) =
[
X − tn−1;α/2

S√
n

, X + tn−1;α/2
S√
n

]
, S2 = 1

n − 1

n∑
i=1

(
Xi − X

)2
.

If we calculate the corresponding 95% confidence intervals for µ assuming that σ2 is unknown, we observe that the
empirical coverage rate is still really close to nominal, but the average length of the confidence interval ends up
being slightly greater, since there’s added uncertainty in the estimation of σ2 by the sample variance. We can
verify this confidence interval calculation by using R’s built-in t.test function.

S = apply(X, 2, sd)

CI = cbind(MLE - qt(1 - alpha/2, n - 1) * S/sqrt(n), MLE + qt(1 - alpha/2,

n - 1) * S/sqrt(n))

mean(CI[, 1] < mu & mu < CI[, 2])
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## [1] 0.95074

mean(CI[, 2] - CI[, 1])

## [1] 0.7917938

print(CI[1, ])

## [1] 0.4695112 1.2107723

as.vector(t.test(X[, 1])$conf.int)

## [1] 0.4695112 1.2107723

Example 2.2. Let X1, . . . , Xn ∼ N
(
µ1, σ2

1
)

and Y1, . . . , Ym ∼ N
(
µ2, σ2

2
)

be 2 independent random samples. If
σ2

1 = σ2
2 = σ2, then we know that:

S2
p = 1

n + m − 2

 n∑
i=1

(
Xi − X

)2 +
m∑

j=1

(
Yj − Y

)2

 ,

Iµ1−µ2; 1−α(X, Y ) =
[

X − Y − tn+m−2;α/2Sp

√
1
n

+ 1
m

, X − Y + tn+m−2;α/2Sp

√
1
n

+ 1
m

]
.

We can verify this confidence interval by using R’s built-in t.test function with the argument var.equal = TRUE.

nsim = 1e+05

n = 100

m = 100

mu1 = 1

mu2 = 1

sigma1 = 2

sigma2 = 2

alpha = 0.05

X = matrix(rnorm(n * nsim, mu1, sigma1), n)

Y = matrix(rnorm(m * nsim, mu2, sigma2), m)

MLE = colMeans(X) - colMeans(Y)

SX = apply(X, 2, var)

SY = apply(Y, 2, var)

Sp = sqrt(((n - 1) * SX + (m - 1) * SY)/(n + m - 2))

CI = cbind(MLE - qt(1 - alpha/2, n + m - 2) * Sp * sqrt((n + m)/(n * m)),

MLE + qt(1 - alpha/2, n + m - 2) * Sp * sqrt((n + m)/(n * m)))

mean(CI[, 1] < mu1 - mu2 & mu1 - mu2 < CI[, 2])

## [1] 0.94956

print(CI[1, ])

## [1] -0.3499840 0.7589286
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as.vector(t.test(X[, 1], Y[, 1], var.equal = TRUE)$conf.int)

## [1] -0.3499840 0.7589286

Additionally, we know that:

Iσ2
1/σ2

2 ; 1−α(X, Y ) =
[
Fm−1,n−1;1−α/2

S2
X

S2
Y

, Fm−1,n−1;α/2
S2

X

S2
Y

]
,

S2
X = 1

n − 1

n∑
i=1

(
Xi − X

)2
, S2

Y = 1
m − 1

m∑
j=1

(
Yj − Y

)2
.

We can verify this confidence interval calculation by using R’s built-in var.test function.

CI = cbind(qf(alpha/2, m - 1, n - 1) * SX/SY, qf(1 - alpha/2, m - 1, n -

1) * SX/SY)

mean(CI[, 1] < sigma1ˆ2/sigma2ˆ2 & sigma1ˆ2/sigma2ˆ2 < CI[, 2])

## [1] 0.94866

print(CI[1, ])

## [1] 0.7120509 1.5728426

as.vector(var.test(X[, 1], Y[, 1])$conf.int)

## [1] 0.7120509 1.5728426

As far as asymptotic confidence intervals are concerned, we might also be interested in ascertaining how their
coverage rate and average length change as our sample size increases.

Example 2.3. Let X1, . . . , Xn ∼ N
(
µ, σ2) be a random sample. Then, we have the following asymptotic

confidence interval for µ based on Slutsky’s theorem:

I(n)
µ; 1−α(X) =

[
Xn − Zα/2

Sn√
n

, Xn + Zα/2
Sn√

n

]
.

We observe that the asymptotic confidence interval for µ has significantly lower than nominal coverage rate for
small sample sizes, but this empirical coverage rate quickly converges to the nominal coverage rate as the sample
size increases. In contrast, the exact confidence interval for µ always has close to nominal coverage rate, even for a
sample size of just n = 5 observations. Accordingly, the average length of the asymptotic confidence interval is
initially shorter than that of the corresponding exact confidence interval, explaining its lower than nominal coverage
rate, but this difference in lengths vanishes as the sample size increases, and both lengths become increasingly
smaller.

nsim = 1e+05

step = 5

n = seq(5, 250, step)

mu = 1

sigma = 2

alpha = 0.05
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X = matrix(0, 0, nsim)

Coverage = matrix(0, 50, 2)

Length = matrix(0, 50, 2)

for (k in 1:50) {

X = rbind(X, matrix(rnorm(step * nsim, mu, sigma), step))

MLE = colMeans(X)

S = apply(X, 2, sd)

CIExact = cbind(MLE - qt(1 - alpha/2, n[k] - 1) * S/sqrt(n[k]), MLE +

qt(1 - alpha/2, n[k] - 1) * S/sqrt(n[k]))

CIAsymptotic = cbind(MLE - qnorm(1 - alpha/2) * S/sqrt(n[k]), MLE +

qnorm(1 - alpha/2) * S/sqrt(n[k]))

Coverage[k, 1] = mean(CIExact[, 1] < mu & mu < CIExact[, 2])

Length[k, 1] = mean(CIExact[, 2] - CIExact[, 1])

Coverage[k, 2] = mean(CIAsymptotic[, 1] < mu & mu < CIAsymptotic[,

2])

Length[k, 2] = mean(CIAsymptotic[, 2] - CIAsymptotic[, 1])

}

plot(n, Coverage[, 1], "l", ylim = range(Coverage), xlab = "Sample Size",

ylab = "Coverage", col = 2, lty = 2, lwd = 2)

lines(n, Coverage[, 2], col = 4, lty = 2, lwd = 2)

abline(h = 0.95, lty = 2, lwd = 2)

legend("bottomright", c("Exact", "Asymptotic", "Nominal"), col = c(2, 4,

1), lty = rep(2, 3), lwd = rep(2, 3), cex = 0.5)
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plot(n, Length[, 1], "l", xlab = "Sample Size", ylab = "Length", col = 2,

lty = 2, lwd = 2)

lines(n, Length[, 2], col = 4, lty = 2, lwd = 2)

legend("topright", c("Exact", "Asymptotic"), col = c(2, 4), lty = c(2,

2), lwd = c(2, 2), cex = 0.5)
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Example 2.4. Let X1, . . . , Xn ∼ Exp(λ) and Y1, . . . , Yn ∼ Exp(1/λ) be 2 independent random samples. Then,
we know that:

Iλ; 1−α(X, Y ) =

√F2n,2n;1−α/2
Y

X
,

√
F2n,2n;α/2

Y

X

 .

nsim = 1e+05

n = 100

lambda = 2

alpha = 0.05

X = matrix(rexp(n * nsim, lambda), n)

Y = matrix(rexp(n * nsim, lambdaˆ(-1)), n)

MLE = sqrt(colSums(Y)/colSums(X))

CI = cbind(sqrt(qf(alpha/2, 2 * n, 2 * n)) * MLE, sqrt(qf(1 - alpha/2,

2 * n, 2 * n)) * MLE)

mean(CI[, 1] < lambda & lambda < CI[, 2])

## [1] 0.95018

Furthermore, we have the following asymptotic confidence interval based on the Delta method:

I(n)
λ; 1−α(X, Y ) =

 1
1 + Zα/2/

√
2n

√
Y n

Xn

,
1

1 − Zα/2/
√

2n

√
Y n

Xn

 .

The average length of the asymptotic confidence interval for λ is initially greater than that of the corresponding
exact confidence interval, but this difference in lengths vanishes as the sample size increases. The asymptotic
confidence interval has significantly lower than nominal coverage rate for small sample sizes, implying that it’s
improperly centered, but this empirical coverage rate quickly converges to the nominal coverage rate as the sample
size increases.
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step = 5

n = seq(5, 250, step)

X = matrix(0, 0, nsim)

Y = matrix(0, 0, nsim)

for (k in 1:50) {

X = rbind(X, matrix(rexp(step * nsim, lambda), step))

Y = rbind(Y, matrix(rexp(step * nsim, lambdaˆ(-1)), step))

MLE = sqrt(colSums(Y)/colSums(X))

CIExact = cbind(sqrt(qf(alpha/2, 2 * n[k], 2 * n[k])) * MLE, sqrt(qf(1 -

alpha/2, 2 * n[k], 2 * n[k])) * MLE)

CIAsymptotic = cbind(sqrt(colSums(Y)/colSums(X))/(1 + qnorm(1 - alpha/2)/sqrt(2 *

n[k])), sqrt(colSums(Y)/colSums(X))/(1 - qnorm(1 - alpha/2)/sqrt(2 *

n[k])))

Coverage[k, 1] = mean(CIExact[, 1] < lambda & lambda < CIExact[, 2])

Length[k, 1] = mean(CIExact[, 2] - CIExact[, 1])

Coverage[k, 2] = mean(CIAsymptotic[, 1] < lambda & lambda < CIAsymptotic[,

2])

Length[k, 2] = mean(CIAsymptotic[, 2] - CIAsymptotic[, 1])

}

plot(n, Coverage[, 1], "l", ylim = range(Coverage), xlab = "Sample Size",

ylab = "Coverage", col = 2, lty = 2, lwd = 2)

lines(n, Coverage[, 2], col = 4, lty = 2, lwd = 2)

abline(h = 0.95, lty = 2, lwd = 2)

legend("bottomright", c("Exact", "Asymptotic", "Nominal"), col = c(2, 4,

1), lty = rep(2, 3), lwd = rep(2, 3), cex = 0.5)
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plot(n, Length[, 2], "l", xlab = "Sample Size", ylab = "Length", col = 4,

lty = 2, lwd = 2)

lines(n, Length[, 1], col = 2, lty = 2, lwd = 2)
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legend("topright", c("Exact", "Asymptotic"), col = c(2, 4), lty = c(2,

2), lwd = c(2, 2), cex = 0.5)
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Example 2.5. Let X1, X2, . . . , Xn be a random sample with f(x; λ, ϑ) = λe−λ(x−ϑ) for x ⩾ ϑ, λ > 0 and ϑ ∈ R.
Then, we know that:

Iλ; 1−α(X; ϑ) =
[

χ2
2n;1−α/2

2n
(
X − ϑ

) ,
χ2

2n;α/2

2n
(
X − ϑ

)] .

nsim = 1e+05

n = 100

lambda = 2

theta = -1

alpha = 0.05

X = matrix(rexp(n * nsim, lambda), n) + theta

CI = cbind(qchisq(alpha/2, 2 * n)/(2 * (colSums(X) - n * theta)), qchisq(1 -

alpha/2, 2 * n)/(2 * (colSums(X) - n * theta)))

mean(CI[, 1] < lambda & lambda < CI[, 2])

## [1] 0.9501

Furthermore, we have the following asymptotic confidence intervals for λ given that ϑ is known and unknown
respectively:

I(n)
λ; 1−α(X; ϑ) =

[
1

Xn − ϑ

(
1 − 1√

n
Zα/2

)
,

1
Xn − ϑ

(
1 + 1√

n
Zα/2

)]
,

I(n)
λ; 1−α(X) =

[
1

Xn − X(1)

(
1 − 1√

n
Zα/2

)
,

1
Xn − X(1)

(
1 + 1√

n
Zα/2

)]
.

We observe that the asymptotic confidence interval for λ with unknown ϑ has significantly higher than nominal
coverage rate for small sample sizes, whereas the asymptotic confidence interval for λ with known ϑ only has
slightly higher than nominal coverage rate for small sample sizes. Accordingly, the average length of the asymptotic
confidence interval with unknown ϑ is initially greater than that of the corresponding exact confidence interval,
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whereas the average length of the asymptotic confidence interval with known ϑ almost always coincides with that
of the corresponding exact confidence interval.

step = 5

n = seq(5, 250, step)

X = matrix(0, 0, nsim)

Coverage = matrix(0, 50, 3)

Length = matrix(0, 50, 3)

for (k in 1:50) {

X = rbind(X, matrix(rexp(step * nsim, lambda), step) + theta)

CIExact = cbind(qchisq(alpha/2, 2 * n[k])/(2 * (colSums(X) - n[k] *

theta)), qchisq(1 - alpha/2, 2 * n[k])/(2 * (colSums(X) - n[k] *

theta)))

CIKnownAsymptotic = cbind((1 - qnorm(1 - alpha/2)/sqrt(n[k]))/(colMeans(X) -

theta), (1 + qnorm(1 - alpha/2)/sqrt(n[k]))/(colMeans(X) - theta))

CIUnknownAsymptotic = cbind((1 - qnorm(1 - alpha/2)/sqrt(n[k]))/(colMeans(X) -

apply(X, 2, min)), (1 + qnorm(1 - alpha/2)/sqrt(n[k]))/(colMeans(X) -

apply(X, 2, min)))

Coverage[k, 1] = mean(CIExact[, 1] < lambda & lambda < CIExact[, 2])

Length[k, 1] = mean(CIExact[, 2] - CIExact[, 1])

Coverage[k, 2] = mean(CIKnownAsymptotic[, 1] < lambda & lambda < CIKnownAsymptotic[,

2])

Length[k, 2] = mean(CIKnownAsymptotic[, 2] - CIKnownAsymptotic[, 1])

Coverage[k, 3] = mean(CIUnknownAsymptotic[, 1] < lambda & lambda <

CIUnknownAsymptotic[, 2])

Length[k, 3] = mean(CIUnknownAsymptotic[, 2] - CIUnknownAsymptotic[,

1])

}

plot(n, Coverage[, 1], "l", ylim = range(Coverage), xlab = "Sample Size",

ylab = "Coverage", col = 2, lty = 2, lwd = 2)

lines(n, Coverage[, 2], col = 4, lty = 2, lwd = 2)

lines(n, Coverage[, 3], col = 7, lty = 2, lwd = 2)

abline(h = 0.95, lty = 2, lwd = 2)

legend("topright", c("Exact", expression("Asymptotic with known" ~ theta),

expression("Asymptotic with unknown" ~ theta), "Nominal"), col = c(2,

4, 7, 1), lty = rep(2, 4), lwd = rep(2, 4), cex = 0.5)
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plot(n, Length[, 3], "l", xlab = "Sample Size", ylab = "Length", col = 7,

lty = 2, lwd = 2)

lines(n, Length[, 1], col = 2, lty = 2, lwd = 2)

lines(n, Length[, 2], col = 4, lty = 2, lwd = 2)

legend("topright", c("Exact", expression("Asymptotic with known" ~ theta),

expression("Asymptotic with unknown" ~ theta)), col = c(2, 4, 7), lty = rep(2,

3), lwd = rep(2, 3), cex = 0.5)
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Additionally, we have the following equal-tailed and minimum length confidence intervals for ϑ given that λ is
known:

IET
ϑ; 1−α(X; λ) =

[
X(1) + 1

nλ
log α

2 , X(1) + 1
nλ

log
(

1 − α

2

)]
,

IML
ϑ; 1−α(X; λ) =

[
X(1) + 1

nλ
log α, X(1)

]
.
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The minimum length confidence interval for ϑ obviously displays a shorter average length than the equal-tailed
confidence interval, while both confidence intervals boast empirical coverage rates which are really close to nominal.

n = 100

X = matrix(rexp(n * nsim, lambda), n) + theta

MLE = apply(X, 2, min)

CIET = cbind(MLE + log(alpha/2)/(n * lambda), MLE + log(1 - alpha/2)/(n *

lambda))

CIML = cbind(MLE + log(alpha)/(n * lambda), MLE)

mean(CIET[, 1] < theta & theta < CIET[, 2])

## [1] 0.94912

mean(CIML[, 1] < theta & theta < CIML[, 2])

## [1] 0.94934

mean(CIET[, 2] - CIET[, 1])

## [1] 0.01831781

mean(CIML[, 2] - CIML[, 1])

## [1] 0.01497866

Lastly, have the following equal-tailed and minimum length asymptotic confidence intervals for ϑ given that λ is
unknown:

IETn

ϑ; 1−α(X) =
[

X(1) +
Xn − X(1)

n
log α

2 , X(1) +
Xn − X(1)

n
log
(

1 − α

2

)]
,

IMLn

ϑ; 1−α(X) =
[

X(1) +
Xn − X(1)

n
log α, X(1)

]
.

The minimum length asymptotic confidence interval for ϑ has lower coverage rate than the corresponding equal-
tailed asymptotic confidence interval, which in turn has lower than nominal coverage rate than both of the exact
confidence intervals, for small sample sizes. Accordingly, the average length of the asymptotic confidence intervals
initially smaller than that of the corresponding exact confidence intervals.

n = seq(5, 250, step)

X = matrix(0, 0, nsim)

Coverage = matrix(0, 50, 4)

Length = matrix(0, 50, 4)

for (k in 1:50) {

X = rbind(X, matrix(rexp(step * nsim, lambda), step) + theta)

MLE = apply(X, 2, min)

CIET = cbind(MLE + log(alpha/2)/(n[k] * lambda), MLE + log(1 - alpha/2)/(n[k] *

lambda))

CIML = cbind(MLE + log(alpha)/(n[k] * lambda), MLE)

CIETAsymptotic = cbind(MLE + log(alpha/2) * (colMeans(X) - MLE)/n[k],

MLE + log(1 - alpha/2) * (colMeans(X) - MLE)/n[k])
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CIMLAsymptotic = cbind(MLE + log(alpha) * (colMeans(X) - MLE)/n[k],

MLE)

Coverage[k, 1] = mean(CIET[, 1] < theta & theta < CIET[, 2])

Length[k, 1] = mean(CIET[, 2] - CIET[, 1])

Coverage[k, 2] = mean(CIML[, 1] < theta & theta < CIML[, 2])

Length[k, 2] = mean(CIML[, 2] - CIML[, 1])

Coverage[k, 3] = mean(CIETAsymptotic[, 1] < theta & theta < CIETAsymptotic[,

2])

Length[k, 3] = mean(CIETAsymptotic[, 2] - CIETAsymptotic[, 1])

Coverage[k, 4] = mean(CIMLAsymptotic[, 1] < theta & theta < CIMLAsymptotic[,

2])

Length[k, 4] = mean(CIMLAsymptotic[, 2] - CIMLAsymptotic[, 1])

}

plot(n, Coverage[, 1], "l", ylim = range(Coverage), xlab = "Sample Size",

ylab = "Coverage", col = 2, lty = 2, lwd = 2)

lines(n, Coverage[, 2], col = 3, lty = 2, lwd = 2)

lines(n, Coverage[, 3], col = 4, lty = 2, lwd = 2)

lines(n, Coverage[, 4], col = 7, lty = 2, lwd = 2)

abline(h = 0.95, lty = 2, lwd = 2)

legend("bottomright", c("Equal-Tailed", "Minimum Length", "Equal-Tailed Asymptotic",

"Minimum Length Asymptotic", "Nominal"), col = c(2, 3, 4, 7, 1), lty = rep(2,

5), lwd = rep(2, 5), cex = 0.5)

0 50 100 150 200 250

0.
86

0.
90

0.
94

Sample Size

C
ov

er
ag

e

Equal−Tailed
Minimum Length
Equal−Tailed Asymptotic
Minimum Length Asymptotic
Nominal

plot(n, Length[, 1], "l", xlab = "Sample Size", ylab = "Length", col = 2,

lty = 2, lwd = 2)

lines(n, Length[, 2], col = 3, lty = 2, lwd = 2)

lines(n, Length[, 3], col = 4, lty = 2, lwd = 2)

lines(n, Length[, 4], col = 7, lty = 2, lwd = 2)

legend("topright", c("Equal-Tailed", "Minimum Length", "Equal-Tailed Asymptotic",
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"Minimum Length Asymptotic"), col = c(2, 3, 4, 7), lty = rep(2, 4),

lwd = rep(2, 4), cex = 0.5)
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Example 2.6. Let X1, X2, . . . , Xn be a random sample with f(x; ϑ) = e−(x−ϑ) for x ⩾ ϑ and ϑ < 0. We want to
estimate the parametric function g(ϑ) = Pϑ(X1 < 0) = 1 − eϑ. Then, we know that:

ĝ(ϑ) = 1 − emin{X(1),0}, IFDn

1−eϑ; 1−α
(X) =

[
ĝ(ϑ) − 1 − ĝ(ϑ)

n
log
(

1 − α

2

)
, ĝ(ϑ) − 1 − ĝ(ϑ)

n
log α

2

]
.

Suppose that we instead only observe the values of the random variable W =
∑n

i=1 1[ϑ,0)(Xi) and those of the
random variables X1, X2, . . . , Xn which are positive. Then, we know that:

ĝ(ϑ) = 1
n

W, IPDn

1−eϑ; 1−α
(W, X) =

[
ĝ(ϑ) − Zα/2

√
1
n

ĝ(ϑ)
(

1 − ĝ(ϑ)
)

, ĝ(ϑ) + Zα/2

√
1
n

ĝ(ϑ)
(

1 − ĝ(ϑ)
)]

.

For ϑ = −1, the full-data asymptotic confidence interval for ϑ has higher than nominal coverage rate, whereas
the partial-data asymptotic confidence interval has lower than nominal coverage rate, for small sample sizes.
Additionally, the full-data asymptotic confidence interval always has shorter length than the corresponding
partial-data asymptotic confidence interval, since it’s more informative about the value of the unknown parameter.

nsim = 1e+05

step = 5

n = seq(5, 250, step)

theta = -1

alpha = 0.05

X = matrix(0, 0, nsim)

Coverage = matrix(0, 50, 2)

Length = matrix(0, 50, 2)

for (k in 1:50) {

X = rbind(X, matrix(rexp(step * nsim, 1), step) + theta)
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W = colSums(X < 0)

MLE = 1 - exp(pmin(apply(X, 2, min), 0))

CIFull = cbind(MLE - log(1 - alpha/2) * (1 - MLE)/n[k], MLE - log(alpha/2) *

(1 - MLE)/n[k])

CIPartial = cbind(W/n[k] - qnorm(1 - alpha/2) * sqrt(W * (n[k] - W)/n[k]ˆ3),

W/n[k] + qnorm(1 - alpha/2) * sqrt(W * (n[k] - W)/n[k]ˆ3))

Coverage[k, 1] = mean(CIFull[, 1] < 1 - exp(theta) & 1 - exp(theta) <

CIFull[, 2])

Length[k, 1] = mean(CIFull[, 2] - CIFull[, 1])

Coverage[k, 2] = mean(CIPartial[, 1] < 1 - exp(theta) & 1 - exp(theta) <

CIPartial[, 2])

Length[k, 2] = mean(CIPartial[, 2] - CIPartial[, 1])

}

plot(n, Coverage[, 1], "l", ylim = range(Coverage), xlab = "Sample Size",

ylab = "Coverage", col = 2, lty = 2, lwd = 2)

lines(n, Coverage[, 2], col = 4, lty = 2, lwd = 2)

abline(h = 0.95, lty = 2, lwd = 2)

legend("bottomright", c("Full Data", "Partial Data", "Nominal"), col = c(2,

4, 1), lty = rep(2, 3), lwd = rep(2, 3), cex = 0.5)
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plot(n, Length[, 1], "l", ylim = range(Length), xlab = "Sample Size", ylab = "Length",

col = 2, lty = 2, lwd = 2)

lines(n, Length[, 2], col = 4, lty = 2, lwd = 2)

legend("topright", c("Full Data", "Partial Data"), col = c(2, 4), lty = c(2,

2), lwd = c(2, 2), cex = 0.5)
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For ϑ = −5, the full-data asymptotic confidence interval for ϑ still behaves the same way, but the partial-data
asymptotic confidence interval always has lower than nominal coverage rate, even for a large sample size of n = 250
observations, and considerably greater length. That’s because the true probability to be estimated is very close to
1, i.e. g(ϑ) ≈ 0.99.

theta = -5

X = matrix(0, 0, nsim)

for (k in 1:50) {

X = rbind(X, matrix(rexp(step * nsim, 1), step) + theta)

W = colSums(X < 0)

MLE = 1 - exp(pmin(apply(X, 2, min), 0))

CIFull = cbind(MLE - log(1 - alpha/2) * (1 - MLE)/n[k], MLE - log(alpha/2) *

(1 - MLE)/n[k])

CIPartial = cbind(W/n[k] - qnorm(1 - alpha/2) * sqrt(W * (n[k] - W)/n[k]ˆ3),

W/n[k] + qnorm(1 - alpha/2) * sqrt(W * (n[k] - W)/n[k]ˆ3))

Coverage[k, 1] = mean(CIFull[, 1] < 1 - exp(theta) & 1 - exp(theta) <

CIFull[, 2])

Length[k, 1] = mean(CIFull[, 2] - CIFull[, 1])

Coverage[k, 2] = mean(CIPartial[, 1] < 1 - exp(theta) & 1 - exp(theta) <

CIPartial[, 2])

Length[k, 2] = mean(CIPartial[, 2] - CIPartial[, 1])

}

plot(n, Coverage[, 1], "l", ylim = range(Coverage), xlab = "Sample Size",

ylab = "Coverage", col = 2, lty = 2, lwd = 2)

lines(n, Coverage[, 2], col = 4, lty = 2, lwd = 2)

abline(h = 0.95, lty = 2, lwd = 2)

legend("bottomright", c("Full Data", "Partial Data", "Nominal"), col = c(2,

4, 1), lty = rep(2, 3), lwd = rep(2, 3), cex = 0.5)
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plot(n, Length[, 1], "l", ylim = range(Length), xlab = "Sample Size", ylab = "Length",

col = 2, lty = 2, lwd = 2)

lines(n, Length[, 2], col = 4, lty = 2, lwd = 2)

legend("topright", c("Full Data", "Partial Data"), col = c(2, 4), lty = c(2,

2), lwd = c(2, 2), cex = 0.5)
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Example 2.7. Let X1, . . . , Xn ∼ U(0, ϑ) be a random sample. Then, we have the following equal-tailed and
minimum length confidence intervals for ϑ:

IET
ϑ; 1−α(X) =

[
X(n)

(
1 − α

2

)−1/n

, X(n)

(α

2

)−1/n
]

,

IML
ϑ; 1−α(X) =

[
X(n), X(n)α

−1/n
]

.
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nsim = 1e+05

n = 100

theta = 2

alpha = 0.05

X = matrix(runif(n * nsim, max = theta), n)

MLE = apply(X, 2, max)

CIET = cbind(MLE * (1 - alpha/2)ˆ(-nˆ(-1)), MLE * (alpha/2)ˆ(-nˆ(-1)))

CIML = cbind(MLE, MLE * alphaˆ(-nˆ(-1)))

mean(CIET[, 1] < theta & theta < CIET[, 2])

## [1] 0.95017

mean(CIML[, 1] < theta & theta < CIML[, 2])

## [1] 0.94991

mean(CIET[, 2] - CIET[, 1])

## [1] 0.0739095

mean(CIML[, 2] - CIML[, 1])

## [1] 0.06021873

Furthermore, we have the following asymptotic confidence intervals for ϑ based on the MLE of ϑ and the central
limit theorem respectively:

IMLEn

ϑ; 1−α(X) =
[

X(n)

1 + log (1 − α/2) /n
,

X(n)

1 + log (α/2) /n

]
,

ICLTn

ϑ; 1−α(X) =
[

2Xn

1 + Zα/2/
√

3n
,

2Xn

1 − Zα/2/
√

3n

]
.

The asymptotic confidence interval based on the MLE of ϑ initially displays significantly greater length and
higher than nominal coverage rate for small sample sizes, but the difference in lengths with the exact confidence
intervals quickly vanishes as the sample size increases. In contrast, the asymptotic confidence interval based on the
central limit theorem always has close to nominal coverage rate, but also always displays greater length than the
corresponding exact confidence intervals.

step = 5

n = seq(5, 250, step)

X = matrix(0, 0, nsim)

Coverage = matrix(0, 50, 4)

Length = matrix(0, 50, 4)

for (k in 1:50) {

X = rbind(X, matrix(runif(step * nsim, max = theta), step))

MLE = apply(X, 2, max)

CIET = cbind(MLE * (1 - alpha/2)ˆ(-n[k]ˆ(-1)), MLE * (alpha/2)ˆ(-n[k]ˆ(-1)))

CIML = cbind(MLE, MLE * alphaˆ(-n[k]ˆ(-1)))
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CIMLEAsymptotic = cbind(MLE/(1 - qchisq(alpha/2, 2)/(2 * n[k])), MLE/(1 -

qchisq(1 - alpha/2, 2)/(2 * n[k])))

CICLTAsymptotic = cbind(2 * colMeans(X)/(1 + qnorm(1 - alpha/2)/sqrt(3 *

n[k])), 2 * colMeans(X)/(1 - qnorm(1 - alpha/2)/sqrt(3 * n[k])))

Coverage[k, 1] = mean(CIET[, 1] < theta & theta < CIET[, 2])

Length[k, 1] = mean(CIET[, 2] - CIET[, 1])

Coverage[k, 2] = mean(CIML[, 1] < theta & theta < CIML[, 2])

Length[k, 2] = mean(CIML[, 2] - CIML[, 1])

Coverage[k, 3] = mean(CIMLEAsymptotic[, 1] < theta & theta < CIMLEAsymptotic[,

2])

Length[k, 3] = mean(CIMLEAsymptotic[, 2] - CIMLEAsymptotic[, 1])

Coverage[k, 4] = mean(CICLTAsymptotic[, 1] < theta & theta < CICLTAsymptotic[,

2])

Length[k, 4] = mean(CICLTAsymptotic[, 2] - CICLTAsymptotic[, 1])

}

plot(n, Coverage[, 1], "l", ylim = range(Coverage), xlab = "Sample Size",

ylab = "Coverage", col = 2, lty = 2, lwd = 2)

lines(n, Coverage[, 2], col = 3, lty = 2, lwd = 2)

lines(n, Coverage[, 3], col = 4, lty = 2, lwd = 2)

lines(n, Coverage[, 4], col = 7, lty = 2, lwd = 2)

abline(h = 0.95, lty = 2, lwd = 2)

legend("topright", c("Equal-Tailed", "Minimum Length", "MLE Asymptotic",

"CLT Asymptotic", "Nominal"), col = c(2, 3, 4, 7, 1), lty = rep(2,

5), lwd = rep(2, 5), cex = 0.5)
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plot(n, Length[, 3], "l", xlab = "Sample Size", ylab = "Length", col = 4,

lty = 2, lwd = 2)

lines(n, Length[, 1], col = 2, lty = 2, lwd = 2)

lines(n, Length[, 2], col = 3, lty = 2, lwd = 2)

61



lines(n, Length[, 4], col = 7, lty = 2, lwd = 2)

legend("topright", c("Equal-Tailed", "Minimum Length", "MLE Asymptotic",

"CLT Asymptotic"), col = c(2, 3, 4, 7), lty = rep(2, 4), lwd = rep(2,

4), cex = 0.5)
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3 Statistical Hypothesis Testing

We want to verify that the hypothesis tests we’re conducting have close to nominal type I error control and to
compare the power of different test statistics for the same hypotheses. In order to achieve that, we first need
to generate nsim independent random samples under the null hypothesis and compute the observed value of the
test statistic for each of the generated samples. Then, we can calculate the empirical type I error rate of the
test statistic as the percentage of the observed values of the test statistic which lead to the rejection of the null
hypothesis. Similarly, we can generate independent random samples under the alternative hypothesis and estimate
the power of the test statistic as the percentage of observed values of the test statistic which lead to the rejection of
the null hypothesis. Lastly, we are interested in exploring the distribution of the test statistic and its corresponding
p-value under the null vs. under the alternative hypothesis. As far as asymptotic tests are concerned, we might
also be interested in ascertaining how their type I error rate and power change as our sample size increases.

Example 3.1. Let X1, . . . , Xn ∼ N
(
µ, σ2) be a random sample with known σ2. We know that the statistic of

the one-sided test of the hypotheses H0 : µ = µ0 vs. H1 : µ > µ0 is given by:

T (X) = X − µ0

σ/
√

n
∼ N (0, 1).

The p-value of the test is defined as p(X) = 1 − Φ (T (X)). We reject H0 at statistical significance level α if
T (X) > Zα or p(X) < α. The type I error probability is equal to Pµ0 (T (X) > Zα) = α and the power is equal to:

β(µ) = Pµ (T (X) > Zα) = 1 − Φ
(

Zα − µ − µ0

σ/
√

n

)
.

When simulating nsim = 100000 samples of size n = 100 under the null hypothesis H0 : µ = µ0 = 1, we observe
that the empirical type I error rate of the test at level α = 5% is really close to the nominal significance level.
The theoretical null distribution of the test statistic is an actual perfect fit for the empirical distribution of the
test statistic under the null hypothesis. We notice that the rejection region to the right of the quantile holds 5%
probability under the null hypothesis. Furthermore, we observe that the distribution of the p-values under the null
hypothesis is uniform on [0, 1].

nsim = 1e+05

n = 100

mu0 = 1

sigma = 6

alpha = 0.05

X = matrix(rnorm(n * nsim, mu0, sigma), n)

MLE = colMeans(X)

z = (MLE - mu0) * sqrt(n)/sigma

mean(z > qnorm(1 - alpha))

## [1] 0.04881

hist(z, "FD", freq = FALSE, main = NA, xlab = expression(Test ~ Statistic ~

under ~ H[0]))

curve(dnorm(x), add = TRUE, col = 2, lty = 2, lwd = 2)
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abline(v = qnorm(1 - alpha), col = 4, lty = 2, lwd = 2)
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pvalue = pnorm(z, lower.tail = FALSE)

mean(pvalue < alpha)

## [1] 0.04881

hist(pvalue, "FD", freq = FALSE, main = NA, xlim = c(0, 1), xlab = expression(P -

Value ~ under ~ H[0]))

curve(dunif(x), add = TRUE, col = 2, lty = 2, lwd = 2)

abline(v = alpha, col = 4, lty = 2, lwd = 2)

P − Value under H0

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

When simulating nsim = 100000 samples of size n = 100 under the alternative hypothesis H1 : µ = 2 > 1 = µ0, we
observe that the empirical power of the test is roughly equal to our theoretical power calculation. The empirical
distribution of the test statistic under the alternative hypothesis has significantly shifted to the right of the
theoretical null distribution of the test statistic. Hence, the rejection region to the right of the quantile holds much
higher probability under the alternative hypothesis. Additionally, the p-values under the alternative hypothesis are
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largely concentrated close to 0 rather than being uniformly distributed.

mu = 2

Y = matrix(rnorm(n * nsim, mu, sigma), n)

MLE = colMeans(Y)

z = (MLE - mu0) * sqrt(n)/sigma

mean(z > qnorm(1 - alpha))

## [1] 0.51014

hist(z, "FD", freq = FALSE, main = NA, xlab = expression(Test ~ Statistic ~

under ~ H[1]))

curve(dnorm(x), add = TRUE, col = 2, lty = 2, lwd = 2)

abline(v = qnorm(1 - alpha), col = 4, lty = 2, lwd = 2)
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pvalue = pnorm(z, lower.tail = FALSE)

mean(pvalue < alpha)

## [1] 0.51014

pnorm(qnorm(1 - alpha) - (mu - mu0) * sqrt(n)/sigma, lower.tail = FALSE)

## [1] 0.5087015

hist(pvalue, "FD", freq = FALSE, main = NA, xlab = expression(P - Value ~

under ~ H[1]))

curve(dunif(x), add = TRUE, xlim = c(0, 1), col = 2, lty = 2, lwd = 2)

abline(v = alpha, col = 4, lty = 2, lwd = 2)
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We want to verify that the test has type I error probability equal to α independent of nsim, n, µ and σ. Furthermore,
we want to study the change in power of the test for different values of n, µ, σ and α. We observe that the power
of the test is an increasing function of the sample size and the statistical significance level, whereas it’s a decreasing
function of the known variance parameter. As the true value of µ becomes larger than the the value µ0 = 1, the
power of the test increases from α = 5% and converges to 1.

nsim = 10000

step = 5

n = seq(5, 250, step)

mu = 2

sigma = 6

alpha = 0.05

X = matrix(0, 0, nsim)

Y = matrix(0, 0, nsim)

Error = numeric(50)

Power = numeric(50)

for (k in 1:50) {

X = rbind(X, matrix(rnorm(step * nsim, mu0, sigma), step))

MLE = colMeans(X)

z = (MLE - mu0) * sqrt(n[k])/sigma

Error[k] = mean(z > qnorm(1 - alpha))

Y = rbind(Y, matrix(rnorm(step * nsim, mu, sigma), step))

MLE = colMeans(Y)

z = (MLE - mu0) * sqrt(n[k])/sigma

Power[k] = mean(z > qnorm(1 - alpha))

}

plot(n, Power, "l", ylim = c(0, 1), xlab = "Sample Size", ylab = NA, col = 4,

lty = 2, lwd = 2)

lines(n, Error, col = 2, lty = 2, lwd = 2)

curve(pnorm(qnorm(1 - alpha) - (mu - mu0) * sqrt(x)/sigma, lower.tail = FALSE),
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add = TRUE, col = 7, lty = 2)

abline(h = 0.05, col = 3, lty = 2)

legend("topleft", c("Type I Error", "Empirical Power", "Significance Level",

"Theoretical Power"), col = c(2, 4, 3, 7), lty = rep(2, 4), lwd = c(2,

2, 1, 1), cex = 0.5)
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n = 100

mu = seq(1.04, 3, 0.04)

sigma = 6

alpha = 0.05

for (k in 1:50) {

X = matrix(rnorm(n * nsim, mu0, sigma), n)

MLE = colMeans(X)

z = (MLE - mu0) * sqrt(n)/sigma

Error[k] = mean(z > qnorm(1 - alpha))

Y = matrix(rnorm(n * nsim, mu[k], sigma), n)

MLE = colMeans(Y)

z = (MLE - mu0) * sqrt(n)/sigma

Power[k] = mean(z > qnorm(1 - alpha))

}

plot(mu, Power, "l", ylim = c(0, 1), xlab = "Mean", ylab = NA, col = 4,

lty = 2, lwd = 2)

lines(mu, Error, col = 2, lty = 2, lwd = 2)

curve(pnorm(qnorm(1 - alpha) + (mu0 - x) * sqrt(n)/sigma, lower.tail = FALSE),

add = TRUE, col = 7, lty = 2)

abline(h = 0.05, col = 3, lty = 2)

legend("topleft", c("Type I Error", "Empirical Power", "Significance Level",

"Theoretical Power"), col = c(2, 4, 3, 7), lty = rep(2, 4), lwd = c(2,

2, 1, 1), cex = 0.5)
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n = 100

mu = 2

sigma = seq(2.2, 12, 0.2)

alpha = 0.05

for (k in 1:50) {

X = matrix(rnorm(n * nsim, mu0, sigma[k]), n)

MLE = colMeans(X)

z = (MLE - mu0) * sqrt(n)/sigma[k]

Error[k] = mean(z > qnorm(1 - alpha))

Y = matrix(rnorm(n * nsim, mu, sigma[k]), n)

MLE = colMeans(Y)

z = (MLE - mu0) * sqrt(n)/sigma[k]

Power[k] = mean(z > qnorm(1 - alpha))

}

plot(sigma, Power, "l", ylim = c(0, 1), xlab = "Standard Deviation", ylab = NA,

col = 4, lty = 2, lwd = 2)

lines(sigma, Error, col = 2, lty = 2, lwd = 2)

curve(pnorm(qnorm(1 - alpha) + (mu0 - mu) * sqrt(n)/x, lower.tail = FALSE),

add = TRUE, col = 7, lty = 2)

abline(h = 0.05, col = 3, lty = 2)

legend("topright", c("Type I Error", "Empirical Power", "Significance Level",

"Theoretical Power"), col = c(2, 4, 3, 7), lty = rep(2, 4), lwd = c(2,

2, 1, 1), cex = 0.5)
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n = 100

mu = 2

sigma = 6

alpha = seq(0.005, 0.25, 0.005)

for (k in 1:50) {

X = matrix(rnorm(n * nsim, mu0, sigma), n)

MLE = colMeans(X)

z = (MLE - mu0) * sqrt(n)/sigma

Error[k] = mean(z > qnorm(1 - alpha[k]))

Y = matrix(rnorm(n * nsim, mu, sigma), n)

MLE = colMeans(Y)

z = (MLE - mu0) * sqrt(n)/sigma

Power[k] = mean(z > qnorm(1 - alpha[k]))

}

plot(alpha, Power, "l", ylim = c(0, 1), xlab = "Significance Level", ylab = NA,

col = 4, lty = 2, lwd = 2)

lines(alpha, Error, col = 2, lty = 2, lwd = 2)

curve(pnorm(qnorm(1 - x) + (mu0 - mu) * sqrt(n)/sigma, lower.tail = FALSE),

add = TRUE, col = 7, lty = 2)

abline(0, 1, col = 3, lty = 2)

legend("topleft", c("Type I Error", "Empirical Power", "Significance Level",

"Theoretical Power"), col = c(2, 4, 3, 7), lty = rep(2, 4), lwd = c(2,

2, 1, 1), cex = 0.5)
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Example 3.2. Let X1, . . . , Xn ∼ N
(
µ, σ2) be a random sample with known σ2. We know that the statistic of

the two-sided test of the hypotheses H0 : µ = µ0 vs. H1 : µ ̸= µ0 is given by:

T (X) = X − µ0

σ/
√

n
∼ N (0, 1).

The p-value of the test is defined as p(X) = 2 [1 − Φ (|T (X)|)]. We reject H0 at statistical significance level α if
|T (X)| > Zα/2 or p(X) < α. The power of the test is equal to:

β(µ) = Pµ

(
|T (X)| > Zα/2

)
= Φ

(
µ0 − µ

σ/
√

n
− Zα/2

)
+ 1 − Φ

(
µ0 − µ

σ/
√

n
+ Zα/2

)
.

When simulating nsim = 100000 samples of size n = 100 under the null hypothesis H0 : µ = µ0 = 1, we observe
that the empirical type I error rate of the test at level α = 5% is really close to the nominal significance level.

nsim = 1e+05

n = 100

mu0 = 1

sigma = 6

alpha = 0.05

X = matrix(rnorm(n * nsim, mu0, sigma), n)

MLE = colMeans(X)

z = (MLE - mu0) * sqrt(n)/sigma

pvalue = 2 * pnorm(abs(z), lower.tail = FALSE)

mean(abs(z) > qnorm(1 - alpha/2))

## [1] 0.05062

mean(pvalue < alpha)

## [1] 0.05062

When simulating nsim = 100000 samples of size n = 100 under the alternative hypothesis H1 : µ = 2 > 1 = µ0, we
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observe that the empirical power of the test is roughly equal to our theoretical power calculation.

mu = 2

Y = matrix(rnorm(n * nsim, mu, sigma), n)

MLE = colMeans(Y)

z = (MLE - mu0) * sqrt(n)/sigma

pvalue = 2 * pnorm(abs(z), lower.tail = FALSE)

mean(abs(z) > qnorm(1 - alpha/2))

## [1] 0.38206

mean(pvalue < alpha)

## [1] 0.38206

pnorm((mu0 - mu) * sqrt(n)/sigma - qnorm(1 - alpha/2)) + pnorm((mu0 - mu) *

sqrt(n)/sigma + qnorm(1 - alpha/2), lower.tail = FALSE)

## [1] 0.384791

If σ2 is instead unknown, then we know that the statistic of the two-sided test of the hypotheses H0 : µ = µ0

vs. H1 : µ ̸= µ0 is given by:

T (X) = X − µ0

S/
√

n
∼ tn−1, S2 = 1

n − 1

n∑
i=1

(
Xi − X

)2
.

If we conduct the same two-sided hypothesis test with unknown σ2, we observe that the empirical type I error rate
under the null hypothesis H0 : µ = µ0 = 1 is still really close to nominal, but the empirical power of the test under
the alternative hypothesis H1 : µ = 2 > 1 = µ0 is slightly lower, since there’s added uncertainty in the estimation
of σ2 by the sample variance. We can verify our test statistic and p-value calculations by using R’s built-in t.test
function.

MLE = colMeans(X)

S = apply(X, 2, sd)

t = (MLE - mu0) * sqrt(n)/S

pvalue = 2 * pt(abs(t), n - 1, lower.tail = FALSE)

mean(abs(t) > qt(1 - alpha/2, n - 1))

## [1] 0.0506

mean(pvalue < alpha)

## [1] 0.0506

print(t[1])

## [1] -0.655421

t.test(X[, 1], mu = mu0)$statistic

## t
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## -0.655421

print(pvalue[1])

## [1] 0.5137169

t.test(X[, 1], mu = mu0)$p.value

## [1] 0.5137169

hist(t, "FD", freq = FALSE, main = NA, xlab = expression(Test ~ Statistic ~

under ~ H[0]))

curve(dt(x, n - 1), add = TRUE, col = 2, lty = 2, lwd = 2)

abline(v = qt(c(alpha/2, 1 - alpha/2), n - 1), col = 4, lty = 2, lwd = 2)
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MLE = colMeans(Y)

S = apply(Y, 2, sd)

t = (MLE - mu0) * sqrt(n)/S

pvalue = 2 * pt(abs(t), n - 1, lower.tail = FALSE)

mean(abs(t) > qt(1 - alpha/2, n - 1))

## [1] 0.3771

mean(pvalue < alpha)

## [1] 0.3771

hist(t, "FD", freq = FALSE, main = NA, xlab = expression(Test ~ Statistic ~

under ~ H[1]))

curve(dt(x, n - 1), add = TRUE, col = 2, lty = 2, lwd = 2)

abline(v = qt(c(alpha/2, 1 - alpha/2), n - 1), col = 4, lty = 2, lwd = 2)
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Furthermore, we have the following asymptotic test statistics based on the central limit theorem and Wilks’ theorem
respectively:

Tn(X) = Xn − µ0

Sn/
√

n

d→ N (0, 1),

Dn(X) = n log
[

1 + n

(
Xn − µ0

)2

(n − 1)S2
n

]
d→ χ2

1.

We observe that the asymptotic test statistics have significantly higher than nominal type I error rate for small
sample sizes, but this empirical type I error rate quickly converges to the nominal significance level as the sample
size increases. The power of both asymptotic test statistics steadily increases with sample size.

nsim = 10000

step = 5

n = seq(5, 250, step)

X = matrix(0, 0, nsim)

Y = matrix(0, 0, nsim)

Error = matrix(0, 50, 2)

Power = matrix(0, 50, 2)

for (k in 1:50) {

X = rbind(X, matrix(rnorm(step * nsim, mu0, sigma), step))

MLE = colMeans(X)

z = (MLE - mu0) * sqrt(n[k])/apply(X, 2, sd)

Error[k, 1] = mean(abs(z) > qnorm(1 - alpha/2))

Error[k, 2] = mean(n[k] * log(1 + (MLE - mu0)ˆ2/colMeans(t(t(X) - colMeans(X))ˆ2)) >

qchisq(1 - alpha, 1))

Y = rbind(Y, matrix(rnorm(step * nsim, mu, sigma), step))

MLE = colMeans(Y)

z = (MLE - mu0) * sqrt(n[k])/apply(X, 2, sd)

Power[k, 1] = mean(abs(z) > qnorm(1 - alpha/2))

Power[k, 2] = mean(n[k] * log(1 + (MLE - mu0)ˆ2/colMeans(t(t(Y) - colMeans(Y))ˆ2)) >
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qchisq(1 - alpha, 1))

}

plot(n, Power[, 1], "l", ylim = c(0, 1), xlab = "Sample Size", ylab = NA,

col = 4, lty = 2, lwd = 2)

lines(n, Power[, 2], col = 7, lty = 2, lwd = 2)

lines(n, Error[, 1], col = 2, lty = 2, lwd = 2)

lines(n, Error[, 2], col = 3, lty = 2, lwd = 2)

abline(h = 0.05, lty = 2)

legend("topleft", c("CLT Type I Error", "CLT Empirical Power", "LRT Type I Error",

"LRT Empirical Power"), col = c(2, 4, 3, 7), lty = rep(2, 4), lwd = rep(2,

4), cex = 0.5)
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Example 3.3. Let X1, . . . , Xn ∼ N
(
µ1, σ2

1
)

and Y1, . . . , Ym ∼ N
(
µ2, σ2

2
)

be 2 independent random samples. If
σ2

1 = σ2
2 = σ2, then we know that the statistic of the two-sided test of the hypotheses H0 : µ1 = µ2 vs. H1 : µ1 ̸= µ2

is given by:

T (X, Y ) = X − Y

Sp

√
1
n + 1

m

∼ tn+m−2, S2
p = 1

n + m − 2

 n∑
i=1

(
Xi − X

)2 +
m∑

j=1

(
Yj − Y

)2

 .

We can verify our test statistic and p-value calculations by using R’s built-in t.test function with the argument
var.equal = TRUE.

nsim = 10000

n = 100

m = 100

mu1 = 1

mu2 = 1

sigma1 = 6

sigma2 = 6

alpha = 0.05
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X = matrix(rnorm(n * nsim, mu1, sigma1), n)

Y = matrix(rnorm(m * nsim, mu2, sigma2), m)

Sp = sqrt(((n - 1) * apply(X, 2, var) + (m - 1) * apply(Y, 2, var))/(n +

m - 2))

t = (colMeans(X) - colMeans(Y)) * sqrt(n * m/(n + m))/Sp

pvalue = 2 * pt(abs(t), n + m - 2, lower.tail = FALSE)

mean(abs(t) > qt(1 - alpha/2, n + m - 2))

## [1] 0.0475

mean(pvalue < alpha)

## [1] 0.0475

print(t[1])

## [1] 0.1748021

t.test(X[, 1], Y[, 1], var.equal = TRUE)$statistic

## t

## 0.1748021

print(pvalue[1])

## [1] 0.8614137

t.test(X[, 1], Y[, 1], var.equal = TRUE)$p.value

## [1] 0.8614137

mu2 = 2

Y = matrix(rnorm(m * nsim, mu2, sigma2), m)

Sp = sqrt(((n - 1) * apply(X, 2, var) + (m - 1) * apply(Y, 2, var))/(n +

m - 2))

t = (colMeans(X) - colMeans(Y)) * sqrt(n * m/(n + m))/Sp

pvalue = 2 * pt(abs(t), n + m - 2, lower.tail = FALSE)

mean(abs(t) > qt(1 - alpha/2, n + m - 2))

## [1] 0.2128

mean(pvalue < alpha)

## [1] 0.2128

Additionally, we know that the statistic of the two-sided test of the hypotheses H0 : σ2
1 = σ2

2 vs. H1 : σ2
1 ̸= σ2

2 is
given by:

T (X, Y ) = S2
X

S2
Y

∼ Fn−1,m−1, S2
X = 1

n − 1

n∑
i=1

(
Xi − X

)2
, S2

Y = 1
m − 1

m∑
j=1

(
Yj − Y

)2
.

The p-value of the test is defined as p(X, Y ) = 2 min
{

FFn−1.m−1 (T (X, Y )) , 1 − FFn−1.m−1 (T (X, Y ))
}

. We can
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verify our test statistic and p-value calculations by using R’s built-in var.test function.

mu1 = 2

mu2 = 2

sigma1 = 2

sigma2 = 2

X = matrix(rnorm(n * nsim, mu1, sigma1), n)

Y = matrix(rnorm(m * nsim, mu2, sigma2), m)

f = apply(X, 2, var)/apply(Y, 2, var)

pvalue = 2 * pmin(pf(f, n - 1, m - 1), pf(f, n - 1, m - 1, lower.tail = FALSE))

mean(f < qf(alpha/2, n - 1, m - 1) | f > qf(1 - alpha/2, n - 1, m - 1))

## [1] 0.0503

mean(pvalue < alpha)

## [1] 0.0503

print(f[1])

## [1] 1.233702

var.test(X[, 1], Y[, 1])$statistic

## F

## 1.233702

print(pvalue[1])

## [1] 0.2977617

var.test(X[, 1], Y[, 1])$p.value

## [1] 0.2977617

hist(f, "FD", freq = FALSE, main = NA, xlab = expression(Test ~ Statistic ~

under ~ H[0]))

curve(df(x, n - 1, m - 1), add = TRUE, col = 2, lty = 2, lwd = 2)

abline(v = qf(c(alpha/2, 1 - alpha/2), n - 1, m - 1), col = 4, lty = 2,

lwd = 2)
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The empirical distribution of the test statistic under the alternative hypothesis H1 : σ2
1 = 4 ̸= 6.25 = σ2

2 has
significantly shifted to the left of the theoretical null distribution of the test statistic, leaving much higher probability
in the rejection region to the left of the lower quantile of the F distribution.

sigma2 = 2.5

Y = matrix(rnorm(m * nsim, mu2, sigma2), m)

f = apply(X, 2, var)/apply(Y, 2, var)

pvalue = 2 * pmin(pf(f, n - 1, m - 1), pf(f, n - 1, m - 1, lower.tail = FALSE))

mean(f < qf(alpha/2, n - 1, m - 1) | f > qf(1 - alpha/2, n - 1, m - 1))

## [1] 0.6166

mean(pvalue < alpha)

## [1] 0.6166

hist(f, "FD", freq = FALSE, main = NA, xlim = c(min(f), qf(1 - alpha/2,

n - 1, m - 1)), xlab = expression(Test ~ Statistic ~ under ~ H[1]))

curve(df(x, n - 1, m - 1), add = TRUE, col = 2, lty = 2, lwd = 2)

abline(v = qf(c(alpha/2, 1 - alpha/2), n - 1, m - 1), col = 4, lty = 2,

lwd = 2)
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Example 3.4. Let X1, . . . , Xn ∼ Exp(λ) be a random sample. We know that the statistic of the one-sided test of
the hypotheses H0 : λ = λ0 vs. H1 : λ < λ0 is given by:

T (X) = 2λ0

n∑
i=1

Xi ∼ χ2
2n.

The p-value of the test is defined as p(X) = 1 − Fχ2
2n

(T (X)). We reject H0 at statistical significance level α if
T (X) > χ2

2n;α or p(X) < α. The power of the test is equal to:

β(λ) = Pλ

(
T (X) > χ2

2n;α
)

= 1 − Fχ2
2n

(
λ

λ0
χ2

2n;α

)
.

nsim = 10000

n = 10

lambda0 = 1

alpha = 0.05

X = matrix(rexp(n * nsim, lambda0), n)

s = 2 * lambda0 * colSums(X)

pvalue = pchisq(s, 2 * n, lower.tail = FALSE)

mean(s > qchisq(1 - alpha, 2 * n))

## [1] 0.052

mean(pvalue < alpha)

## [1] 0.052

hist(s, "FD", freq = FALSE, main = NA, xlab = expression(Test ~ Statistic ~

under ~ H[0]))

curve(dchisq(x, 2 * n), add = TRUE, col = 2, lty = 2, lwd = 2)

abline(v = qchisq(1 - alpha, 2 * n), col = 4, lty = 2, lwd = 2)
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The empirical distribution of the test statistic under the alternative hypothesis H1 : λ = 0.75 < 1 = λ0 has
significantly shifted to the right of the theoretical null distribution of the test statistic, leaving much higher
probability in the rejection region to the right of the upper quantile of the χ2 distribution.

lambda = 0.75

Y = matrix(rexp(n * nsim, lambda), n)

s = 2 * lambda0 * colSums(Y)

pvalue = pchisq(s, 2 * n, lower.tail = FALSE)

mean(s > qchisq(1 - alpha, 2 * n))

## [1] 0.2596

mean(pvalue < alpha)

## [1] 0.2596

pchisq(qchisq(1 - alpha, 2 * n) * lambda/lambda0, 2 * n, lower.tail = FALSE)

## [1] 0.2622408

hist(s, "FD", freq = FALSE, main = NA, ylim = c(0, max(dchisq(s, 2 * n))),

xlab = expression(Test ~ Statistic ~ under ~ H[1]))

curve(dchisq(x, 2 * n), add = TRUE, col = 2, lty = 2, lwd = 2)

abline(v = qchisq(1 - alpha, 2 * n), col = 4, lty = 2, lwd = 2)
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The empirical distribution of the test statistic when λ = 1.25 > 1 = λ0 has significantly shifted to the left of the
theoretical null distribution of the test statistic, leaving much lower probability in the rejection region to the right
of the upper quantile of the χ2 distribution and ensuring the failure to reject the null hypothesis in favor of the
other one-sided alternative.

lambda = 1.25

Y = matrix(rexp(n * nsim, lambda), n)

s = 2 * lambda0 * colSums(Y)

pvalue = pchisq(s, 2 * n, lower.tail = FALSE)

mean(s > qchisq(1 - alpha, 2 * n))

## [1] 0.0056

mean(pvalue < alpha)

## [1] 0.0056

pchisq(qchisq(1 - alpha, 2 * n) * lambda/lambda0, 2 * n, lower.tail = FALSE)

## [1] 0.006182675

hist(s, "FD", freq = FALSE, main = NA, xlab = expression(Test ~ Statistic ~

under ~ H[0]))

curve(dchisq(x, 2 * n), add = TRUE, col = 2, lty = 2, lwd = 2)

abline(v = qchisq(1 - alpha, 2 * n), col = 4, lty = 2, lwd = 2)

80



Test Statistic under H0

D
en

si
ty

5 10 15 20 25 30 35

0.
00

0.
04

0.
08

As the true value of the parameter λ moves from 0 towards the value λ0 = 1, the power of the test drops from 1 to
the nominal significance level α = 5%. In contrast, as the true value of the parameter λ moves from the value
λ0 = 1 towards infinity, the power of the test starts dropping until it converges to 0.

lambda = seq(0.04, 2, 0.04)

Power = numeric(50)

for (k in 1:50) {

X = matrix(rexp(n * nsim, lambda[k]), n)

s = 2 * lambda0 * colSums(X)

Power[k] = mean(s > qchisq(1 - alpha, 2 * n))

}

plot(lambda, Power, "l", ylim = c(0, 1), xlab = expression(lambda), ylab = "Power",

col = 2, lty = 2, lwd = 2)

curve(pchisq(qchisq(1 - alpha, 2 * n) * x/lambda0, 2 * n, lower.tail = FALSE),

add = TRUE, col = 2, lty = 2)

abline(h = alpha, col = 4, lty = 2)

abline(v = lambda0, col = 7, lty = 2)

legend("topright", c("Power Function", "Significance Level", expression(lambda[0])),

col = c(2, 4, 7), lty = rep(2, 3), lwd = c(2, 1, 1), cex = 0.5)

81



0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

λ

P
ow

er

Power Function
Significance Level
λ0

Example 3.5. Let X1, . . . , Xn ∼ U(0, ϑ) be a random sample. According to the generalized likelihood ratio
criterion, we know that T (X) = 1

ϑ0
X(n) ∼ Beta(n, 1) is a suitable statistic for the two-sided test of the hypotheses

H0 : ϑ = ϑ0 vs. H1 : ϑ ̸= ϑ0. The p-value of the test is defined as follows:

p(X) =

[T (X)]n , T (X) ⩽ 1

0, T (X) > 1
.

We reject H0 at statistical significance level α if T (X) < α1/n or T (X) > 1. The power of the test is equal to:

β(ϑ) =


1, ϑ ⩽ ϑ0α1/n

α (ϑ0/ϑ)n
, ϑ0α1/n < ϑ ⩽ ϑ0

1 − (1 − α) (ϑ0/ϑ)n
, ϑ > ϑ0

.

Alternatively, one could invert the following equal-tailed CI for ϑ to derive a suitable test of the same hypotheses:

IET
ϑ; 1−α(X) =

[
X(n)

(
1 − α

2

)−1/n

, X(n)

(α

2

)−1/n
]

.

The p-value of that test is defined as follows:

p(X) =

2 min {[T (X)]n , 1 − [T (X)]n} , T (X) ⩽ 1

0, T (X) > 1
.

We reject H0 at statistical significance level α if T (X) <
(

α
2
)1/n or T (X) >

(
1 − α

2
)1/n. The power of the test is

equal to:

β(ϑ) =


1, ϑ ⩽ ϑ0 (α/2)1/n

(α/2) (ϑ0/ϑ)n
, ϑ0 (α/2)1/n

< ϑ ⩽ ϑ0 (1 − α/2)1/n

1 − (1 − α) (ϑ0/ϑ)n
, ϑ > ϑ0 (1 − α/2)1/n

.
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nsim = 10000

n = 10

theta0 = 2

alpha = 0.05

X = matrix(runif(n * nsim, max = theta0), n)

MLE = apply(X, 2, max)

pvalue = ifelse(MLE < theta0, (MLE/theta0)ˆn, 0)

mean(MLE < theta0 * alphaˆ(nˆ(-1)) | MLE > theta0)

## [1] 0.048

mean(pvalue < alpha)

## [1] 0.048

pvalue = ifelse(MLE < theta0, 2 * pmin((MLE/theta0)ˆn, 1 - (MLE/theta0)ˆn),

0)

mean(MLE < theta0 * (alpha/2)ˆ(nˆ(-1)) | MLE > theta0 * (1 - alpha/2)ˆ(nˆ(-1)))

## [1] 0.0503

mean(pvalue < alpha)

## [1] 0.0503

hist(MLE/theta0, "FD", freq = FALSE, main = NA, xlab = expression(Test ~

Statistic ~ under ~ H[0]))

curve(n * xˆ(n - 1), add = TRUE, col = 2, lty = 2, lwd = 2)

abline(v = c(alphaˆ(nˆ(-1)), 1), col = 4, lty = 2, lwd = 2)

abline(v = c((alpha/2)ˆ(nˆ(-1)), (1 - alpha/2)ˆ(nˆ(-1))), col = 7, lty = 2,

lwd = 2)

legend("topleft", c("LRT Critical Values", "Inverted ET CI Critical Values"),

col = c(4, 7), lty = c(2, 2), lwd = c(2, 2), cex = 0.5)
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The empirical distribution of the test statistic under the alternative hypothesis H1 : ϑ = 2.25 > 2 = ϑ0 has
significantly shifted to the right of the theoretical null distribution of the test statistic, leaving much higher
probability in the rejection region to the right of the upper quantile of the Beta distribution. Both test statistics
perform similarly in this direction of the alternative hypothesis.

theta = 2.25

Y = matrix(runif(n * nsim, max = theta), n)

MLE = apply(Y, 2, max)

pvalue = ifelse(MLE < theta0, (MLE/theta0)ˆn, 0)

mean(MLE < theta0 * alphaˆ(nˆ(-1)) | MLE > theta0)

## [1] 0.7053

mean(pvalue < alpha)

## [1] 0.7053

pvalue = ifelse(MLE < theta0, 2 * pmin((MLE/theta0)ˆn, 1 - (MLE/theta0)ˆn),

0)

mean(MLE < theta0 * (alpha/2)ˆ(nˆ(-1)) | MLE > theta0 * (1 - alpha/2)ˆ(nˆ(-1)))

## [1] 0.7042

mean(pvalue < alpha)

## [1] 0.7042

hist(MLE/theta0, "FD", freq = FALSE, main = NA, xlab = expression(Test ~

Statistic ~ under ~ H[1]))

curve(n * xˆ(n - 1), add = TRUE, col = 2, lty = 2, lwd = 2)

abline(v = c(alphaˆ(nˆ(-1)), 1), col = 4, lty = 2, lwd = 2)

abline(v = c((alpha/2)ˆ(nˆ(-1)), (1 - alpha/2)ˆ(nˆ(-1))), col = 7, lty = 2,

lwd = 2)

legend("topleft", c("LRT Critical Values", "Inverted ET CI Critical Values"),

col = c(4, 7), lty = c(2, 2), lwd = c(2, 2), cex = 0.5)
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The empirical distribution of the test statistic under the alternative hypothesis H1 : ϑ = 1.75 < 2 = ϑ0 has
significantly shifted to the left of the theoretical null distribution of the test statistic, leaving much higher probability
in the rejection region to the left of the lower quantile of the Beta distribution. We observe that the lower quantile
for the likelihood ratio test is much higher than that for the test based on the inverted equal-tailed CI, leading to
it having significantly higher power in this direction of the alternative hypothesis.

theta = 1.75

Y = matrix(runif(n * nsim, max = theta), n)

MLE = apply(Y, 2, max)

pvalue = ifelse(MLE < theta0, (MLE/theta0)ˆn, 0)

mean(MLE < theta0 * alphaˆ(nˆ(-1)) | MLE > theta0)

## [1] 0.1813

mean(pvalue < alpha)

## [1] 0.1813

pvalue = ifelse(MLE < theta0, 2 * pmin((MLE/theta0)ˆn, 1 - (MLE/theta0)ˆn),

0)

mean(MLE < theta0 * (alpha/2)ˆ(nˆ(-1)) | MLE > theta0 * (1 - alpha/2)ˆ(nˆ(-1)))

## [1] 0.0892

mean(pvalue < alpha)

## [1] 0.0892

hist(MLE/theta0, "FD", freq = FALSE, main = NA, xlab = expression(Test ~

Statistic ~ under ~ H[1]))

curve(n * xˆ(n - 1), add = TRUE, col = 2, lty = 2, lwd = 2)

abline(v = c(alphaˆ(nˆ(-1)), 1), col = 4, lty = 2, lwd = 2)

abline(v = c((alpha/2)ˆ(nˆ(-1)), (1 - alpha/2)ˆ(nˆ(-1))), col = 7, lty = 2,

lwd = 2)
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legend("topleft", c("LRT Critical Values", "Inverted ET CI Critical Values"),

col = c(4, 7), lty = c(2, 2), lwd = c(2, 2), cex = 0.5)
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We verify that the power of both tests is equal to 1 for sufficiently small values of ϑ. As the true value of the
parameter ϑ moves towards the value ϑ0 = 2, the power of both tests drops from 1 to the nominal significance level
α = 5%, with the power of the likelihood ratio test being consistently higher. In contrast, as the true value of
the parameter ϑ moves from the value ϑ0 = 2 towards infinity, the power of both tests starts rising again until it
converges to 1, with both tests essentially displaying the same power.

LRTPower = function(theta, theta0, alpha, n) {

ifelse(theta < theta0 * alphaˆ(nˆ(-1)), 1, ifelse(theta > theta0, 1 -

(1 - alpha) * (theta0/theta)ˆn, (theta0/theta)ˆn * alpha))

}

CIPower = function(theta, theta0, alpha, n) {

ifelse(theta < theta0 * (alpha/2)ˆ(nˆ(-1)), 1, ifelse(theta > theta0 *

(1 - alpha/2)ˆ(nˆ(-1)), 1 - (1 - alpha) * (theta0/theta)ˆn, (theta0/theta)ˆn *

alpha/2))

}

theta = seq(1.04, 3, 0.04)

Power = matrix(0, 50, 2)

for (k in 1:50) {

X = matrix(runif(n * nsim, max = theta[k]), n)

MLE = apply(X, 2, max)

Power[k, 1] = mean(MLE < theta0 * alphaˆ(nˆ(-1)) | MLE > theta0)

Power[k, 2] = mean(MLE < theta0 * (alpha/2)ˆ(nˆ(-1)) | MLE > theta0 *

(1 - alpha/2)ˆ(nˆ(-1)))

}

plot(theta, Power[, 1], "l", ylim = c(0, 1), xlab = expression(theta),
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ylab = "Power", col = 2, lty = 2, lwd = 2)

lines(theta, Power[, 2], col = 3, lty = 2, lwd = 2)

curve(LRTPower(x, theta0, alpha, n), add = TRUE, col = 2, lty = 2)

curve(CIPower(x, theta0, alpha, n), add = TRUE, col = 3, lty = 2)

abline(h = alpha, col = 4, lty = 2)

abline(v = theta0, col = 7, lty = 2)

legend("right", c("LRT Power", "Inverted ET CI Power", "Significance Level",

expression(theta[0])), col = c(2, 3, 4, 7), lty = rep(2, 4), lwd = c(2,

2, 1, 1), cex = 0.5)
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Example 3.6. Let X1, . . . , X6 ∼ Bernoulli(p) be a random sample. According to the Neyman - Pearson lemma,
we know that T (X) =

∑6
i=1 Xi ∼ Binomial(6, p0) is a suitable statistic for the test of the simple hypotheses

H0 : p = p0 = 0.2 vs. H1 : p = p1 = 0.5. We reject H0 at statistical significance level α = 5% if T (X) > 3 with
probability 1 or if T (X) = 3 with probability γ = FT (3)−(1−α)

FT (3)−FT (2) ≈ 0.4. The power of the test is equal to:

β(p) =
6∑

k=4

(
6
k

)
pk(1 − p)6−k + γ

(
6
3

)
p3(1 − p)3.

nsim = 10000

n = 6

p0 = 0.2

c = 3

alpha = 0.05

gamma = (pbinom(c, n, p0) - 1 + alpha)/dbinom(c, n, p0)

X = matrix(rbinom(n * nsim, 1, p0), n)

s = colSums(X)

mean((s > c) + gamma * (s == c))

## [1] 0.05033691
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barplot(table(factor(s, levels = 0:max(s)))/nsim, space = 0, xlab = expression(Test ~

Statistic ~ under ~ H[0]))

lines(0:max(s) + 0.5, dbinom(0:max(s), n, p0), col = 2, lty = 2, lwd = 2)

abline(v = c + 1 - gamma, col = 4, lty = 2, lwd = 2)
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The empirical distribution of the test statistic under the alternative hypothesis H1 : p = 0.5 > 0.2 = p0 has
significantly shifted to the right of the theoretical null distribution of the test statistic, leaving much higher
probability in the rejection region.

p = 0.5

Y = matrix(rbinom(n * nsim, 1, p), n)

s = colSums(Y)

mean((s > c) + gamma * (s == c))

## [1] 0.471063

pbinom(c, n, p, lower.tail = FALSE) + gamma * dbinom(c, n, p)

## [1] 0.4697876

barplot(table(factor(s, levels = 0:max(s)))/nsim, space = 0, ylim = c(0,

max(dbinom(0:max(s), n, p0))), xlab = expression(Test ~ Statistic ~

under ~ H[1]))

lines(0:max(s) + 0.5, dbinom(0:max(s), n, p0), col = 2, lty = 2, lwd = 2)

abline(v = c + 1 - gamma, col = 4, lty = 2, lwd = 2)
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Alternatively, we have the following asymptotic test statistic based on the central limit theorem:

Tn(X) = Xn − p0√
p0 (1 − p0) /n

d→ N (0, 1).

We observe that the asymptotic test statistic has close to nominal type I error rate even for small sample sizes,
while its power sharply increases with sample size.

step = 5

n = seq(5, 250, step)

p = 0.3

X = matrix(0, 0, nsim)

Y = matrix(0, 0, nsim)

Error = numeric(50)

Power = numeric(50)

for (k in 1:50) {

X = rbind(X, matrix(rbinom(step * nsim, 1, p0), step))

MLE = colMeans(X)

z = (MLE - p0) * sqrt(n[k]/(p0 * (1 - p0)))

Error[k] = mean(abs(z) > qnorm(1 - alpha/2))

Y = rbind(Y, matrix(rbinom(step * nsim, 1, p), step))

MLE = colMeans(Y)

z = (MLE - p0) * sqrt(n[k]/(p0 * (1 - p0)))

Power[k] = mean(abs(z) > qnorm(1 - alpha/2))

}

plot(n, Power, "l", ylim = c(0, 1), xlab = "Sample Size", ylab = NA, col = 4,

lty = 2, lwd = 2)

lines(n, Error, col = 2, lty = 2, lwd = 2)

curve(pnorm((p0 - p) * sqrt(x/(p0 * (1 - p0))) - qnorm(1 - alpha/2)) +

pnorm((p0 - p) * sqrt(x/(p0 * (1 - p0))) + qnorm(1 - alpha/2), lower.tail = FALSE),
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add = TRUE, col = 7, lty = 2)

abline(h = 0.05, col = 3, lty = 2)

legend("topleft", c("Type I Error", "Empirical Power", "Significance Level",

"Theoretical Power"), col = c(2, 4, 3, 7), lty = rep(2, 4), lwd = c(2,

2, 1, 1), cex = 0.5)
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4 Linear Regression
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5 Analysis of Variance
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6 Nonparametric Methods

93


	Point Estimation
	Confidence Intervals
	Statistical Hypothesis Testing
	Linear Regression
	Analysis of Variance
	Nonparametric Methods

